This protocol describes a method for extracting small RNAs from human serum. We have used this method to isolate microRNAs from cancer serum for use in DNA arrays and also singleplex quantitative PCR. The protocol utilizes phenol and guanidinium thiocyanate reagents with modifications to yield high quality RNA.
Spatiotemporal information about dynamic proteins inside live cells is crucial for understanding biology. A type of super-resolution microscopy called fast 3D-structured illumination microscopy (f3D-SIM) reveals unique information about the cytokinetic Z ring in bacteria: both its bead-like appearance and the rapid dynamics of FtsZ within the ring.
Engineering and analysis of load bearing tissues with heterogeneous cell populations are still a challenge. Here, we describe a method for creating bi-layered alginate hydrogel discs as a platform for co-culture of diverse cell populations within one construct.
This protocol aims to transplant a 3D bioprinted patch onto the epicardium of infarcted mice modeling heart failure. It includes details regarding anesthesia, the surgical chest opening, permanent ligation of the left anterior descending (LAD) coronary artery and application of a bioprinted patch onto the infarcted area of the heart.
This protocol aims to fabricate 3D cardiac spheroids (CSs) by co-culturing cells in hanging drops. Collagen-embedded CSs are treated with doxorubicin (DOX, a cardiotoxic agent) at physiological concentrations to model heart failure. In vitro testing using DOX-treated CSs may be used to identify novel therapies for heart failure patients.
Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten