Anmelden

The chair conformation is the most stable form of cyclohexane due to the absence of angle and torsional strain. The absence of angle strain is a result of cyclohexane’s bond angle being very close to the ideal tetrahedral bond angle of 109.5° in its chair conformer. Similarly, the torsional strain is also absent owing to the perfectly staggered arrangement of bonds.

The hydrogen atoms linked to carbons are arranged in two different axial and equatorial orientations to achieve this staggered form. The axial bonds are directed straight up or down, lying parallel to the ring axis, whereas the equatorial bonds are pointed sideways roughly along the equator of the ring. Out of the six axial bonds, three are pointed up, and the remaining three are pointed downward. Similarly, three bonds are slanted upwards among the six equatorial bonds, while the remaining three are slanted downwards. Thus, each carbon atom in the cyclohexane ring has an axial and an equatorial bond, pointing in opposite directions.

A chair conformation of cyclohexane can undergo a conformational change into another chair conformer by the partial rotation of C-C bonds. This chair-chair interconversion that leads to the generation of two equivalent energy forms is known as ring flipping. Upon ring flipping, the axial and equatorial bonds interchange their positions. The axial bonds in one chair conformation get converted to equatorial bonds in the other chair conformation, while equatorial bonds change their position to axial bonds.

Tags

Chair ConformationCyclohexaneAngle StrainTorsional StrainBond AngleTetrahedral Bond AngleStaggered ArrangementAxial OrientationEquatorial OrientationRing Flipping

Aus Kapitel 3:

article

Now Playing

3.11 : Chair Conformation of Cyclohexane

Alkane und Cycloalkane

13.9K Ansichten

article

3.1 : Struktur der Alkane

Alkane und Cycloalkane

26.2K Ansichten

article

3.2 : Konstitutionelle Isomere von Alkanen

Alkane und Cycloalkane

17.3K Ansichten

article

3.3 : Nomenklatur der Alkane

Alkane und Cycloalkane

20.5K Ansichten

article

3.4 : Physikalische Eigenschaften von Alkanen

Alkane und Cycloalkane

10.5K Ansichten

article

3.5 : Newman-Projektionen

Alkane und Cycloalkane

15.8K Ansichten

article

3.6 : Konformationen von Ethan und Propan

Alkane und Cycloalkane

13.3K Ansichten

article

3.7 : Konformationen von Butan

Alkane und Cycloalkane

13.4K Ansichten

article

3.8 : Cycloalkane

Alkane und Cycloalkane

11.8K Ansichten

article

3.9 : Konformationen von Cycloalkanen

Alkane und Cycloalkane

11.3K Ansichten

article

3.10 : Konformationen von Cyclohexan

Alkane und Cycloalkane

11.7K Ansichten

article

3.12 : Stabilität von substituierten Cyclohexanen

Alkane und Cycloalkane

12.1K Ansichten

article

3.13 : Disubstituierte Cyclohexane: cis-trans-Isomerie

Alkane und Cycloalkane

11.5K Ansichten

article

3.14 : Verbrennungsenergie: Ein Maß für die Stabilität von Alkanen und Cycloalkanen

Alkane und Cycloalkane

6.1K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten