Accedi

The chair conformation is the most stable form of cyclohexane due to the absence of angle and torsional strain. The absence of angle strain is a result of cyclohexane’s bond angle being very close to the ideal tetrahedral bond angle of 109.5° in its chair conformer. Similarly, the torsional strain is also absent owing to the perfectly staggered arrangement of bonds.

The hydrogen atoms linked to carbons are arranged in two different axial and equatorial orientations to achieve this staggered form. The axial bonds are directed straight up or down, lying parallel to the ring axis, whereas the equatorial bonds are pointed sideways roughly along the equator of the ring. Out of the six axial bonds, three are pointed up, and the remaining three are pointed downward. Similarly, three bonds are slanted upwards among the six equatorial bonds, while the remaining three are slanted downwards. Thus, each carbon atom in the cyclohexane ring has an axial and an equatorial bond, pointing in opposite directions.

A chair conformation of cyclohexane can undergo a conformational change into another chair conformer by the partial rotation of C-C bonds. This chair-chair interconversion that leads to the generation of two equivalent energy forms is known as ring flipping. Upon ring flipping, the axial and equatorial bonds interchange their positions. The axial bonds in one chair conformation get converted to equatorial bonds in the other chair conformation, while equatorial bonds change their position to axial bonds.

Tags

Chair ConformationCyclohexaneAngle StrainTorsional StrainBond AngleTetrahedral Bond AngleStaggered ArrangementAxial OrientationEquatorial OrientationRing Flipping

Dal capitolo 3:

article

Now Playing

3.11 : Chair Conformation of Cyclohexane

Alcani e cicloalcani

13.9K Visualizzazioni

article

3.1 : Struttura degli alcani

Alcani e cicloalcani

26.2K Visualizzazioni

article

3.2 : Isomeri costituzionali degli alcani

Alcani e cicloalcani

17.3K Visualizzazioni

article

3.3 : Nomenclatura degli alcani

Alcani e cicloalcani

20.5K Visualizzazioni

article

3.4 : Proprietà fisiche degli alcani

Alcani e cicloalcani

10.5K Visualizzazioni

article

3.5 : Proiezioni di Newman

Alcani e cicloalcani

15.8K Visualizzazioni

article

3.6 : Conformazioni di etano e propano

Alcani e cicloalcani

13.3K Visualizzazioni

article

3.7 : Conformazioni del butano

Alcani e cicloalcani

13.4K Visualizzazioni

article

3.8 : Cicloalcani

Alcani e cicloalcani

11.8K Visualizzazioni

article

3.9 : Conformazioni dei cicloalcani

Alcani e cicloalcani

11.3K Visualizzazioni

article

3.10 : Conformazioni del cicloesano

Alcani e cicloalcani

11.7K Visualizzazioni

article

3.12 : Stabilità dei cicloesani sostituiti

Alcani e cicloalcani

12.1K Visualizzazioni

article

3.13 : CIcloesani disostituiti: isomeria cis-trans

Alcani e cicloalcani

11.5K Visualizzazioni

article

3.14 : Energia di combustione: una misura di stabilità in alcani e cicloalcani

Alcani e cicloalcani

6.1K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati