Anmelden

If the rotational definitions are compared with the definitions of linear kinematic variables from motion along a straight line and motion in two and three dimensions, we can observe a mapping of the linear variables to the rotational ones.

When comparing the linear and rotational variables individually, the linear variable of position has physical units of meters, whereas the angular position variable has dimensionless units of radians, as it is the ratio of two lengths. The linear velocity has units of m/s, and its counterpart, the angular velocity, has units of rad/s.

In the case of circular motion, the linear tangential speed of a particle at a radius r from the axis of rotation is related to the angular velocity by the relation

Equation1

This could also apply to points on a rigid body rotating about a fixed axis. Here, only circular motion is considered. In a circular motion, both uniform and nonuniform, there exists a centripetal acceleration. The centripetal acceleration vector points inward from the particle executing circular motion toward the axis of rotation.

Thus, in a uniform circular motion, when the angular velocity is constant and the angular acceleration is zero, we observe a linear acceleration, that is, centripetal acceleration, since the tangential speed is a constant.

This text is adapted from Openstax, University Physics Volume 1, Section 10.3: Relating Angular and Translational Quantities.

Tags
Angular PositionRadiansLinear PositionMetersAngular VelocityRad sLinear VelocityM sCircular MotionTangential SpeedCentripetal AccelerationRigid Body RotationUniform Circular MotionAngular Acceleration

Aus Kapitel 10:

article

Now Playing

10.5 : Relating Angular And Linear Quantities - I

Rotation and Rigid Bodies

6.2K Ansichten

article

10.1 : Winkelgeschwindigkeit und Verschiebung

Rotation and Rigid Bodies

11.3K Ansichten

article

10.2 : Winkelgeschwindigkeit und Beschleunigung

Rotation and Rigid Bodies

8.4K Ansichten

article

10.3 : Rotation mit konstanter Winkelbeschleunigung - I

Rotation and Rigid Bodies

6.4K Ansichten

article

10.4 : Rotation mit konstanter Winkelbeschleunigung - II

Rotation and Rigid Bodies

5.7K Ansichten

article

10.6 : Beziehung zwischen winkelförmigen und linearen Größen - II

Rotation and Rigid Bodies

5.1K Ansichten

article

10.7 : Trägheitsmoment

Rotation and Rigid Bodies

8.5K Ansichten

article

10.8 : Trägheitsmoment und kinetische Rotationsenergie

Rotation and Rigid Bodies

6.9K Ansichten

article

10.9 : Trägheitsmoment: Berechnungen

Rotation and Rigid Bodies

6.4K Ansichten

article

10.10 : Trägheitsmoment von zusammengesetzten Objekten

Rotation and Rigid Bodies

5.8K Ansichten

article

10.11 : Satz der Parallelachse

Rotation and Rigid Bodies

6.1K Ansichten

article

10.12 : Satz der Senkrechten Achse

Rotation and Rigid Bodies

2.4K Ansichten

article

10.13 : Vektortransformation in rotierenden Koordinatensystemen

Rotation and Rigid Bodies

1.2K Ansichten

article

10.14 : Coriolis-Kraft

Rotation and Rigid Bodies

2.6K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten