Anmelden

The origin of Earth's ocean tides has been a subject of continuous investigation for over 2000 years. However, the work of Newton is considered to be the beginning of the proper understanding of the phenomenon. Ocean tides are the result of gravitational tidal forces. These same tidal forces are present in any astronomical body; they are responsible for the internal heat that creates the volcanic activity on Io, one of Jupiter's moons, and the breakup of stars that get too close to black holes.

Newton's law of gravitation states that gravitational force is inversely proportional to the square of the distance between the two-point masses. However, for an extended object like Earth, the gravitational force acting on the side facing the Sun is much higher than the gravitational force acting on the other side. This difference in forces at different locations gives rise to tidal forces, which are inversely proportional to the cube of the distance between the two masses.

Sea levels rise twice a day mainly due to tidal forces acting on the Earth because of the Moon's gravitational force. Though the Sun is 27 million times more massive than the Moon, its distance from the Earth is approximately 390 times more than the distance between the Earth and the Moon. Since the tidal forces are inversely proportional to the cube of the distance, the Sun's tidal force is about half that of the Moon.

Although the Moon is the dominant force that causes tides on the Earth, the Sun still has an effect. The tides vary depending on the orientation of the three bodies. When the Sun, Earth, and Moon are aligned, i.e., on a Full Moon or a New Moon day, the tidal forces add, and the amplitude of tides is maximum. These are called Spring tides. On a Half Moon day, the Moon is perpendicular to the Sun-Earth line. Here, the tides are at their smallest and are called Neap tides.

The rotation of the Earth and the revolution of the Moon further complicates the calculation for the time intervals of tides. However, approximately, the time between consecutive high (or low) tides can be considered to be 12.5 hours.

This text is adapted from Openstax, University Physics Volume 1, Section 13.6: Tidal Forces.

Tags
Tidal ForcesOcean TidesGravitational ForceNewton s Law Of GravitationMoon s Gravitational ForceSun s Tidal ForceSpring TidesNeap TidesAstronomical BodiesInternal HeatVolcanic ActivityTidal AmplitudeEarth Moon Sun Alignment

Aus Kapitel 14:

article

Now Playing

14.18 : Tidal Forces

Gravitation

2.4K Ansichten

article

14.1 : Gravitation

Gravitation

6.0K Ansichten

article

14.2 : Newtons Gesetz der Gravitation

Gravitation

9.4K Ansichten

article

14.3 : Gravitation zwischen kugelsymmetrischen Massen

Gravitation

787 Ansichten

article

14.4 : Schwerkraft zwischen kugelförmigen Körpern

Gravitation

8.0K Ansichten

article

14.5 : Reduzierte Massenkoordinaten: Isoliertes Zweikörperproblem

Gravitation

1.1K Ansichten

article

14.6 : Beschleunigung durch Schwerkraft auf der Erde

Gravitation

10.3K Ansichten

article

14.7 : Beschleunigung durch Schwerkraft auf anderen Planeten

Gravitation

4.0K Ansichten

article

14.8 : Das scheinbare Gewicht und die Erdrotation

Gravitation

3.5K Ansichten

article

14.9 : Variation der Beschleunigung aufgrund der Schwerkraft in der Nähe der Erdoberfläche

Gravitation

2.3K Ansichten

article

14.10 : Potentielle Energie durch Gravitation

Gravitation

2.6K Ansichten

article

14.11 : Das Prinzip der Überlagerung und des Gravitationsfeldes

Gravitation

1.1K Ansichten

article

14.12 : Fluchtgeschwindigkeit

Gravitation

2.5K Ansichten

article

14.13 : Zirkuläre Umlaufbahnen und kritische Geschwindigkeit für Satelliten

Gravitation

2.8K Ansichten

article

14.14 : Energie eines Satelliten in einer kreisförmigen Umlaufbahn

Gravitation

2.1K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten