로그인

The origin of Earth's ocean tides has been a subject of continuous investigation for over 2000 years. However, the work of Newton is considered to be the beginning of the proper understanding of the phenomenon. Ocean tides are the result of gravitational tidal forces. These same tidal forces are present in any astronomical body; they are responsible for the internal heat that creates the volcanic activity on Io, one of Jupiter's moons, and the breakup of stars that get too close to black holes.

Newton's law of gravitation states that gravitational force is inversely proportional to the square of the distance between the two-point masses. However, for an extended object like Earth, the gravitational force acting on the side facing the Sun is much higher than the gravitational force acting on the other side. This difference in forces at different locations gives rise to tidal forces, which are inversely proportional to the cube of the distance between the two masses.

Sea levels rise twice a day mainly due to tidal forces acting on the Earth because of the Moon's gravitational force. Though the Sun is 27 million times more massive than the Moon, its distance from the Earth is approximately 390 times more than the distance between the Earth and the Moon. Since the tidal forces are inversely proportional to the cube of the distance, the Sun's tidal force is about half that of the Moon.

Although the Moon is the dominant force that causes tides on the Earth, the Sun still has an effect. The tides vary depending on the orientation of the three bodies. When the Sun, Earth, and Moon are aligned, i.e., on a Full Moon or a New Moon day, the tidal forces add, and the amplitude of tides is maximum. These are called Spring tides. On a Half Moon day, the Moon is perpendicular to the Sun-Earth line. Here, the tides are at their smallest and are called Neap tides.

The rotation of the Earth and the revolution of the Moon further complicates the calculation for the time intervals of tides. However, approximately, the time between consecutive high (or low) tides can be considered to be 12.5 hours.

This text is adapted from Openstax, University Physics Volume 1, Section 13.6: Tidal Forces.

Tags
Tidal ForcesOcean TidesGravitational ForceNewton s Law Of GravitationMoon s Gravitational ForceSun s Tidal ForceSpring TidesNeap TidesAstronomical BodiesInternal HeatVolcanic ActivityTidal AmplitudeEarth Moon Sun Alignment

장에서 14:

article

Now Playing

14.18 : Tidal Forces

Gravitation

2.4K Views

article

14.1 : 인력

Gravitation

6.0K Views

article

14.2 : 뉴턴의 중력의 법칙

Gravitation

9.4K Views

article

14.3 : 구형으로 대칭적인 질량 사이의 중력(Gravitation Between Spherically Symmetric Masses)

Gravitation

787 Views

article

14.4 : 구형체 사이의 중력(Gravity Between Spherical Body)

Gravitation

8.0K Views

article

14.5 : 감소된 질량 좌표: 고립된 2체 관련 문제

Gravitation

1.1K Views

article

14.6 : 지구의 중력으로 인한 가속도

Gravitation

10.3K Views

article

14.7 : 다른 행성의 중력으로 인한 가속도

Gravitation

4.0K Views

article

14.8 : 겉보기 무게와 지구의 자전

Gravitation

3.5K Views

article

14.9 : 지구 표면 근처의 중력으로 인한 가속도의 변화

Gravitation

2.3K Views

article

14.10 : 중력으로 인한 위치 에너지

Gravitation

2.6K Views

article

14.11 : 중첩의 원리와 중력장(The Principle of Superposition and the Gravitational Field)

Gravitation

1.1K Views

article

14.12 : 탈출 속도

Gravitation

2.5K Views

article

14.13 : 위성의 원형 궤도와 임계 속도

Gravitation

2.8K Views

article

14.14 : 원형 궤도에 있는 위성의 에너지

Gravitation

2.1K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유