Accedi

The origin of Earth's ocean tides has been a subject of continuous investigation for over 2000 years. However, the work of Newton is considered to be the beginning of the proper understanding of the phenomenon. Ocean tides are the result of gravitational tidal forces. These same tidal forces are present in any astronomical body; they are responsible for the internal heat that creates the volcanic activity on Io, one of Jupiter's moons, and the breakup of stars that get too close to black holes.

Newton's law of gravitation states that gravitational force is inversely proportional to the square of the distance between the two-point masses. However, for an extended object like Earth, the gravitational force acting on the side facing the Sun is much higher than the gravitational force acting on the other side. This difference in forces at different locations gives rise to tidal forces, which are inversely proportional to the cube of the distance between the two masses.

Sea levels rise twice a day mainly due to tidal forces acting on the Earth because of the Moon's gravitational force. Though the Sun is 27 million times more massive than the Moon, its distance from the Earth is approximately 390 times more than the distance between the Earth and the Moon. Since the tidal forces are inversely proportional to the cube of the distance, the Sun's tidal force is about half that of the Moon.

Although the Moon is the dominant force that causes tides on the Earth, the Sun still has an effect. The tides vary depending on the orientation of the three bodies. When the Sun, Earth, and Moon are aligned, i.e., on a Full Moon or a New Moon day, the tidal forces add, and the amplitude of tides is maximum. These are called Spring tides. On a Half Moon day, the Moon is perpendicular to the Sun-Earth line. Here, the tides are at their smallest and are called Neap tides.

The rotation of the Earth and the revolution of the Moon further complicates the calculation for the time intervals of tides. However, approximately, the time between consecutive high (or low) tides can be considered to be 12.5 hours.

This text is adapted from Openstax, University Physics Volume 1, Section 13.6: Tidal Forces.

Tags
Tidal ForcesOcean TidesGravitational ForceNewton s Law Of GravitationMoon s Gravitational ForceSun s Tidal ForceSpring TidesNeap TidesAstronomical BodiesInternal HeatVolcanic ActivityTidal AmplitudeEarth Moon Sun Alignment

Dal capitolo 14:

article

Now Playing

14.18 : Tidal Forces

Gravitation

2.4K Visualizzazioni

article

14.1 : Gravitazione

Gravitation

6.0K Visualizzazioni

article

14.2 : Legge di Gravitazione di Newton

Gravitation

9.4K Visualizzazioni

article

14.3 : Gravitazione tra masse sfericamente simmetriche

Gravitation

787 Visualizzazioni

article

14.4 : Gravità tra corpi sferici

Gravitation

8.0K Visualizzazioni

article

14.5 : Coordinate di massa ridotte: problema isolato a due corpi

Gravitation

1.1K Visualizzazioni

article

14.6 : Accelerazione dovuta alla gravità sulla Terra

Gravitation

10.3K Visualizzazioni

article

14.7 : Accelerazione dovuta alla gravità su altri pianeti

Gravitation

4.0K Visualizzazioni

article

14.8 : Peso apparente e rotazione terrestre

Gravitation

3.5K Visualizzazioni

article

14.9 : Variazione dell'accelerazione dovuta alla gravità vicino alla superficie terrestre

Gravitation

2.3K Visualizzazioni

article

14.10 : Energia potenziale dovuta alla gravitazione

Gravitation

2.6K Visualizzazioni

article

14.11 : Il principio di sovrapposizione e il campo gravitazionale

Gravitation

1.1K Visualizzazioni

article

14.12 : Velocità di fuga

Gravitation

2.5K Visualizzazioni

article

14.13 : Orbite circolari e velocità critica per i satelliti

Gravitation

2.8K Visualizzazioni

article

14.14 : Energia di un satellite in orbita circolare

Gravitation

2.1K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati