Anmelden

pH plays a critical role in maintaining normal cellular activities. It helps maintain the structure and function of various proteins, dictates the charge on cellular membranes, and is crucial for metabolic reactions inside the cell. Moreover, cells use the energy from the proton motive force to generate ATP.

Cytosolic pH

Under physiological conditions, the cytosolic pH is slightly more acidic than the extracellular pH. However, cells must prevent further acidification of their cytosol to maintain their membrane potential and carry out normal functioning. Therefore, they employ several specialized proton-translocating machinery—antiporters, symporters, and proton-pumping ATPases—to tightly regulate the steady-state pH.

Cellular Organelles and pH Homeostasis

The compartmentalization inside the eukaryotic cells helps to provide distinct environmental conditions to carry out specific functions within different membrane-enclosed organelles. The internal pH in these different compartments is highly variable, but it is an important determinant of their effective functioning.

For example, cytochromes located on the inner mitochondrial membrane efflux protons using energy from electron flow. This helps to establish a proton gradient across the mitochondrial membrane that is used to generate chemical energy in the form of ATP. Similarly, lysosomes maintain an internal acidic pH by pumping protons from the cytosol using energy from ATP hydrolysis. This is essential for the functioning of the lysosomal enzymes.

However, some organelles, including the nucleus, endoplasmic reticulum, and peroxisomes, need to maintain their internal pH in equilibrium with the cytoplasm. Therefore, they lack intrinsic pH-regulatory systems and are highly permeable to protons.

Dysregulation of Intracellular pH

Certain metabolic or genetic conditions may disrupt the steady-state pH of the cytoplasm or the organelles inside the cell and lead to disease. For example, mutations in chloride carriers, such as CLCN6 and CLCN7, present on late endosomes and lysosomes have been linked to osteoporosis and lysosomal storage disease. Similarly, mutations in the CLCN5 channel hinder luminal acidification and production of early endosomes in renal epithelial cells and can eventually lead to kidney failure.

Tags
PH RegulationCellular ActivitiesCytosolic PHProton Motive ForceATP GenerationProton translocating MachineryMembrane PotentialPH HomeostasisEukaryotic CellsMitochondrial MembraneLysosomal EnzymesIntracellular PH DysregulationChloride CarriersOsteoporosisLysosomal Storage Disease

Aus Kapitel 2:

article

Now Playing

2.11 : pH Regulierung in Zellen

Biochemie der Zelle

5.9K Ansichten

article

2.1 : Das Periodensystem und die Elemente der Organismen

Biochemie der Zelle

15.4K Ansichten

article

2.2 : Funktionale Gruppen

Biochemie der Zelle

19.9K Ansichten

article

2.3 : Arten von chemischen Bindungen

Biochemie der Zelle

19.8K Ansichten

article

2.4 : Nichtkovalente Anziehungskräfte in Biomolekülen

Biochemie der Zelle

17.4K Ansichten

article

2.5 : Polymere

Biochemie der Zelle

20.8K Ansichten

article

2.6 : Was sind Lipide?

Biochemie der Zelle

7.3K Ansichten

article

2.7 : Struktur der Lipide

Biochemie der Zelle

9.2K Ansichten

article

2.8 : Chemie der Kohlenhydrate

Biochemie der Zelle

8.4K Ansichten

article

2.9 : Nukleinsäuren

Biochemie der Zelle

7.4K Ansichten

article

2.10 : Protein und Proteinstrukturen

Biochemie der Zelle

10.1K Ansichten

article

2.12 : Chemie der Zelle

Biochemie der Zelle

6.7K Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten