Entrar

pH plays a critical role in maintaining normal cellular activities. It helps maintain the structure and function of various proteins, dictates the charge on cellular membranes, and is crucial for metabolic reactions inside the cell. Moreover, cells use the energy from the proton motive force to generate ATP.

Cytosolic pH

Under physiological conditions, the cytosolic pH is slightly more acidic than the extracellular pH. However, cells must prevent further acidification of their cytosol to maintain their membrane potential and carry out normal functioning. Therefore, they employ several specialized proton-translocating machinery—antiporters, symporters, and proton-pumping ATPases—to tightly regulate the steady-state pH.

Cellular Organelles and pH Homeostasis

The compartmentalization inside the eukaryotic cells helps to provide distinct environmental conditions to carry out specific functions within different membrane-enclosed organelles. The internal pH in these different compartments is highly variable, but it is an important determinant of their effective functioning.

For example, cytochromes located on the inner mitochondrial membrane efflux protons using energy from electron flow. This helps to establish a proton gradient across the mitochondrial membrane that is used to generate chemical energy in the form of ATP. Similarly, lysosomes maintain an internal acidic pH by pumping protons from the cytosol using energy from ATP hydrolysis. This is essential for the functioning of the lysosomal enzymes.

However, some organelles, including the nucleus, endoplasmic reticulum, and peroxisomes, need to maintain their internal pH in equilibrium with the cytoplasm. Therefore, they lack intrinsic pH-regulatory systems and are highly permeable to protons.

Dysregulation of Intracellular pH

Certain metabolic or genetic conditions may disrupt the steady-state pH of the cytoplasm or the organelles inside the cell and lead to disease. For example, mutations in chloride carriers, such as CLCN6 and CLCN7, present on late endosomes and lysosomes have been linked to osteoporosis and lysosomal storage disease. Similarly, mutations in the CLCN5 channel hinder luminal acidification and production of early endosomes in renal epithelial cells and can eventually lead to kidney failure.

Tags
PH RegulationCellular ActivitiesCytosolic PHProton Motive ForceATP GenerationProton translocating MachineryMembrane PotentialPH HomeostasisEukaryotic CellsMitochondrial MembraneLysosomal EnzymesIntracellular PH DysregulationChloride CarriersOsteoporosisLysosomal Storage Disease

Do Capítulo 2:

article

Now Playing

2.11 : Regulação do pH nas Células

Bioquímica da Célula

5.9K Visualizações

article

2.1 : A Tabela Periódica e os Elementos dos Organismos

Bioquímica da Célula

15.4K Visualizações

article

2.2 : Grupos Funcionais

Bioquímica da Célula

19.9K Visualizações

article

2.3 : Tipos de Ligações Químicas

Bioquímica da Célula

19.8K Visualizações

article

2.4 : Atrações Não-Covalentes em Biomoléculas

Bioquímica da Célula

17.4K Visualizações

article

2.5 : Polímeros

Bioquímica da Célula

20.8K Visualizações

article

2.6 : O que são Lipídios?

Bioquímica da Célula

7.3K Visualizações

article

2.7 : Estrutura dos Lipídios

Bioquímica da Célula

9.2K Visualizações

article

2.8 : Química dos Carboidratos

Bioquímica da Célula

8.4K Visualizações

article

2.9 : Ácidos Nucleicos

Bioquímica da Célula

7.4K Visualizações

article

2.10 : Proteínas e Estruturas Proteicas

Bioquímica da Célula

10.1K Visualizações

article

2.12 : Química da Célula

Bioquímica da Célula

6.7K Visualizações

JoVE Logo

Privacidade

Termos de uso

Políticas

Pesquisa

Educação

SOBRE A JoVE

Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados