S'identifier

pH plays a critical role in maintaining normal cellular activities. It helps maintain the structure and function of various proteins, dictates the charge on cellular membranes, and is crucial for metabolic reactions inside the cell. Moreover, cells use the energy from the proton motive force to generate ATP.

Cytosolic pH

Under physiological conditions, the cytosolic pH is slightly more acidic than the extracellular pH. However, cells must prevent further acidification of their cytosol to maintain their membrane potential and carry out normal functioning. Therefore, they employ several specialized proton-translocating machinery—antiporters, symporters, and proton-pumping ATPases—to tightly regulate the steady-state pH.

Cellular Organelles and pH Homeostasis

The compartmentalization inside the eukaryotic cells helps to provide distinct environmental conditions to carry out specific functions within different membrane-enclosed organelles. The internal pH in these different compartments is highly variable, but it is an important determinant of their effective functioning.

For example, cytochromes located on the inner mitochondrial membrane efflux protons using energy from electron flow. This helps to establish a proton gradient across the mitochondrial membrane that is used to generate chemical energy in the form of ATP. Similarly, lysosomes maintain an internal acidic pH by pumping protons from the cytosol using energy from ATP hydrolysis. This is essential for the functioning of the lysosomal enzymes.

However, some organelles, including the nucleus, endoplasmic reticulum, and peroxisomes, need to maintain their internal pH in equilibrium with the cytoplasm. Therefore, they lack intrinsic pH-regulatory systems and are highly permeable to protons.

Dysregulation of Intracellular pH

Certain metabolic or genetic conditions may disrupt the steady-state pH of the cytoplasm or the organelles inside the cell and lead to disease. For example, mutations in chloride carriers, such as CLCN6 and CLCN7, present on late endosomes and lysosomes have been linked to osteoporosis and lysosomal storage disease. Similarly, mutations in the CLCN5 channel hinder luminal acidification and production of early endosomes in renal epithelial cells and can eventually lead to kidney failure.

Tags
PH RegulationCellular ActivitiesCytosolic PHProton Motive ForceATP GenerationProton translocating MachineryMembrane PotentialPH HomeostasisEukaryotic CellsMitochondrial MembraneLysosomal EnzymesIntracellular PH DysregulationChloride CarriersOsteoporosisLysosomal Storage Disease

Du chapitre 2:

article

Now Playing

2.11 : pH Regulation in Cells

Biochimie de la cellule

5.9K Vues

article

2.1 : Le tableau périodique et les éléments des organismes

Biochimie de la cellule

15.4K Vues

article

2.2 : Groupes fonctionnels

Biochimie de la cellule

19.9K Vues

article

2.3 : Types de liaisons chimiques

Biochimie de la cellule

19.8K Vues

article

2.4 : Attractions non covalentes dans les biomolécules

Biochimie de la cellule

17.4K Vues

article

2.5 : Polymères

Biochimie de la cellule

20.8K Vues

article

2.6 : Que sont les lipides ?

Biochimie de la cellule

7.3K Vues

article

2.7 : Structure des lipides

Biochimie de la cellule

9.2K Vues

article

2.8 : Chimie des glucides

Biochimie de la cellule

8.4K Vues

article

2.9 : Acides nucléiques

Biochimie de la cellule

7.4K Vues

article

2.10 : Protéines et structure protéique

Biochimie de la cellule

10.1K Vues

article

2.12 : Chimie de la cellule

Biochimie de la cellule

6.7K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.