Atomization, converting samples into gas-phase atoms and ions, is essential for atomic spectroscopy. The flame temperature required for atomization affects the efficiency of the atomic spectroscopic methods by increasing the atomization efficiency and the relative population of the excited and ground states.

At thermal equilibrium, the relative populations of excited and ground state atoms can be estimated using the Maxwell–Boltzmann distribution. For example, an increase in temperature from 2500 K to 2600 K can increase the population of excited-state sodium atoms by 45%, while the ground-state population decrease is negligible. Since atomic emission spectroscopy (AES) relies on photon emission from these excited states, it is highly temperature-dependent. In contrast, atomic absorption spectroscopy (AAS) and atomic fluorescence spectroscopy (AFS) primarily depend on the ground-state population and have less significant temperature dependence. However, for easily ionizable elements, an increase in flame temperature causes a loss of atoms by ionization, adversely affecting absorption and fluorescence spectral intensity.

In addition, for atomic spectroscopy overall, higher temperature increases the velocity of the atoms, making the Doppler effect more pronounced. This results in the broadening of atomic spectral lines and decreasing peak height.

Aus Kapitel 14:

article

Now Playing

14.2 : Atomic Spectroscopy: Effects of Temperature

Atomic Spectroscopy

134 Ansichten

article

14.1 : Atomspektroskopie: Absorption, Emission und Fluoreszenz

Atomic Spectroscopy

351 Ansichten

article

14.3 : Atomabsorptionsspektroskopie: Überblick

Atomic Spectroscopy

264 Ansichten

article

14.4 : Atomabsorptionsspektroskopie: Instrumentierung

Atomic Spectroscopy

201 Ansichten

article

14.5 : Atomabsorptionsspektroskopie: Strahlung und Lichtquellen

Atomic Spectroscopy

167 Ansichten

article

14.6 : Atomabsorptionsspektroskopie: Zerstäubungsmethoden

Atomic Spectroscopy

160 Ansichten

article

14.7 : Atomabsorptionsspektroskopie: Interferenz

Atomic Spectroscopy

244 Ansichten

article

14.8 : Atomabsorptionsspektroskopie: Labor

Atomic Spectroscopy

132 Ansichten

article

14.9 : Atomemissionsspektroskopie: Überblick

Atomic Spectroscopy

291 Ansichten

article

14.10 : Atomemissionsspektroskopie: Instrumentierung

Atomic Spectroscopy

135 Ansichten

article

14.11 : Atomemissionsspektroskopie: Interferenz

Atomic Spectroscopy

68 Ansichten

article

14.12 : Atomemissionsspektroskopie mit induktiv gekoppeltem Plasma: Prinzip

Atomic Spectroscopy

280 Ansichten

article

14.13 : Atomemissionsspektroskopie mit induktiv gekoppeltem Plasma: Instrumentierung

Atomic Spectroscopy

91 Ansichten

article

14.14 : Atomemissionsspektroskopie: Labor

Atomic Spectroscopy

73 Ansichten

article

14.15 : Atomfluoreszenzspektroskopie

Atomic Spectroscopy

100 Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten