Atomization, converting samples into gas-phase atoms and ions, is essential for atomic spectroscopy. The flame temperature required for atomization affects the efficiency of the atomic spectroscopic methods by increasing the atomization efficiency and the relative population of the excited and ground states.
At thermal equilibrium, the relative populations of excited and ground state atoms can be estimated using the Maxwell–Boltzmann distribution. For example, an increase in temperature from 2500 K to 2600 K can increase the population of excited-state sodium atoms by 45%, while the ground-state population decrease is negligible. Since atomic emission spectroscopy (AES) relies on photon emission from these excited states, it is highly temperature-dependent. In contrast, atomic absorption spectroscopy (AAS) and atomic fluorescence spectroscopy (AFS) primarily depend on the ground-state population and have less significant temperature dependence. However, for easily ionizable elements, an increase in flame temperature causes a loss of atoms by ionization, adversely affecting absorption and fluorescence spectral intensity.
In addition, for atomic spectroscopy overall, higher temperature increases the velocity of the atoms, making the Doppler effect more pronounced. This results in the broadening of atomic spectral lines and decreasing peak height.
Dal capitolo 14:
Now Playing
Atomic Spectroscopy
193 Visualizzazioni
Atomic Spectroscopy
500 Visualizzazioni
Atomic Spectroscopy
373 Visualizzazioni
Atomic Spectroscopy
333 Visualizzazioni
Atomic Spectroscopy
213 Visualizzazioni
Atomic Spectroscopy
247 Visualizzazioni
Atomic Spectroscopy
355 Visualizzazioni
Atomic Spectroscopy
202 Visualizzazioni
Atomic Spectroscopy
424 Visualizzazioni
Atomic Spectroscopy
197 Visualizzazioni
Atomic Spectroscopy
91 Visualizzazioni
Atomic Spectroscopy
347 Visualizzazioni
Atomic Spectroscopy
130 Visualizzazioni
Atomic Spectroscopy
101 Visualizzazioni
Atomic Spectroscopy
172 Visualizzazioni
See More