Consider a lawn roller with a mass of 100 kg, a radius of 0.2 meters, and a radius of gyration of 0.15 meters. A force of 200 N is applied to this roller, angled at 60 degrees from the horizontal plane. What will be the angular acceleration of the lawn roller?

The friction between the roller and the ground is characterized by two coefficients. The static friction coefficient is 0.15, while the kinetic friction coefficient is 0.1. These values are crucial in understanding the interaction between the roller and the surface on which it moves. The concept of rolling without slipping is assumed in this scenario. In this context, the moment of the point of zero instantaneous velocity is calculated. This calculation is made using the horizontal component of the applied force.

Equation 1

The point of zero instantaneous velocity also serves as a reference for the calculation of the moment of inertia, derived using the parallel axis theorem.

Equation 2

Once the moment of inertia is determined, it is substituted into the moment equation, subsequently providing the sought-after value of angular acceleration.

Equation 2

However, it is important to note that the assumption of rolling without slipping is only valid under certain conditions. Specifically, the frictional force resulting from the movement of the lawn roller's center must be lower than the maximum static frictional force. Only then can the roller move without slipping.

Tags
Angular AccelerationLawn RollerMassRadiusRadius Of GyrationApplied ForceStatic Friction CoefficientKinetic Friction CoefficientRolling Without SlippingMoment Of InertiaParallel Axis TheoremPoint Of Zero Instantaneous VelocityFrictional Force

Aus Kapitel 15:

article

Now Playing

15.13 : Equation of Motion: General Plane motion - Problem Solving

Planar Kinematics of a Rigid Body

94 Ansichten

article

15.1 : Planare Starrkörperbewegung

Planar Kinematics of a Rigid Body

262 Ansichten

article

15.2 : Rotationsbewegung um eine feste Achse

Planar Kinematics of a Rigid Body

231 Ansichten

article

15.3 : Kinematische Gleichungen für die Rotation

Planar Kinematics of a Rigid Body

213 Ansichten

article

15.4 : Absolute Bewegungsanalyse - Allgemeine Bewegung der Ebene

Planar Kinematics of a Rigid Body

130 Ansichten

article

15.5 : Relativbewegungsanalyse - Geschwindigkeit

Planar Kinematics of a Rigid Body

260 Ansichten

article

15.6 : Momentane Geschwindigkeit des Zentrums von Null

Planar Kinematics of a Rigid Body

336 Ansichten

article

15.7 : Relativbewegungsanalyse - Beschleunigung

Planar Kinematics of a Rigid Body

251 Ansichten

article

15.8 : Relativbewegungsanalyse mit rotierenden Achsen

Planar Kinematics of a Rigid Body

338 Ansichten

article

15.9 : Relativbewegungsanalyse mit rotierenden Achsen - Beschleunigung

Planar Kinematics of a Rigid Body

229 Ansichten

article

15.10 : Relative Bewegungsanalyse mit rotierenden Achsen - Problemlösung

Planar Kinematics of a Rigid Body

282 Ansichten

article

15.11 : Bewegungsgleichung: Drehung um eine feste Achse

Planar Kinematics of a Rigid Body

130 Ansichten

article

15.12 : Bewegungsgleichung: Allgemeine Bewegung in der Ebene

Planar Kinematics of a Rigid Body

155 Ansichten

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten