A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Decellularized human skin is suitable for tissue regeneration. A major issue of decellularization is the preservation of the native architecture, along with the appropriate content of structural proteins, glycosaminoglycans (GAGs), and growth factors. The method proposed allows fast and effective decellularization, producing decellularized skin with well-preserved native features.
Extracellular matrix (ECM) provides biophysical and biochemical stimuli to support self-renewal, proliferation, survival, and differentiation of surrounding cells due to its content of diverse bioactive molecules. Due to these characteristics, the ECM has been recently considered a promising candidate for the creation of biological scaffolds to boost tissue regeneration. Emerging studies have demonstrated that decellularized human tissues could resemble the native ECM in their structural and biochemical profiles, preserving the three-dimensional (3D) architecture and the content of fundamental biological molecules. Hence, decellularized ECM can be employed to promote tissue remodeling, repair, and functional reconstruction of many organs. Selecting the appropriate decellularization procedure is crucial to obtain acellular tissues that retain the characteristics of the ideal microenvironment for cells.
The protocol described here provides a detailed step-by-step description of the decellularization method to obtain a reproducible and effective cell-free biological ECM. Skin fragments from patients undergoing plastic surgery were scaled down and decellularized using a combination of sodium dodecylsulfate (SDS), Triton X-100, and antibiotics. To promote the regular and homogeneous transport of the solution through the samples, they were enclosed in embedding cassettes to ensure protection from mechanical insults. After the decellularization procedure, the snow-white color of skin fragments indicated complete and successful decellularization. Additionally, decellularized samples showed an intact and well-preserved architecture. The results suggest that the proposed decellularization method was effective, fast, and reproducible and protected samples from architectural damages.
The ECM serves as a scaffold for cells, supporting them through an intricate architecture maintained by different components, and it is one of the major factors responsible for the mechanical properties of the heart and cardiac tissue function1,2. Increasing evidence suggests that ECM plays an active role in tissue remodeling, making the conventional assumption that the ECM is a passive component obsolete3,4,5,6. The role of the ECM is to provide biophysical and biochemical cues to resident cells. It is well-established that these signals can influence many fundamental cell behaviors, impacting their contractile function, proliferation, migration, and differentiation potential7,8,9. Thus, ECM is increasingly being employed in tissue engineering and regenerative medicine as a therapeutic support tool9,10,11,12,13.
The ECM consists of several proteins such as collagen, elastin, fibronectin, proteoglycan, and laminin, along with ECM-bound growth factors, all involved in regeneration mechanisms, such as cell recruitment, migration, and differentiation, as well as cell alignment and proliferation14. The mechanical properties of the tissues also have great relevance in the physiopathology of the organs. Indeed, changes in mechanical properties are often associated with the onset and the evolution of several diseases. The reason resides in the fact that when the ECM is modified, signals coming from the environment induce changes in gene and protein expression, leading to functional impairment15,16.
Regenerative therapies for organ repair are currently focused on replicating the sophisticated microenvironment of the native tissue to heal the organ where the body fails. Despite the rapid pace of many tissue engineering approaches, the tissues still cannot be reproduced accurately in their entirety and complexity by artificial procedures. Synthetic materials have been largely employed so far, as they can be appropriately tuned to simulate the mechanical and biochemical properties of the cellular microenvironment. Nevertheless, they have limits, such as the inability to mimic the numerous interactions within the native tissue, the cost of technologies to produce them, and the fact that they are less natural and biocompatible than native tissue17,18,19. Additionally, their composition, primarily in terms of proteins and soluble factors, greatly differs from the natural one, which is extremely difficult to replicate20.
The cutting-edge approach in regenerative medicine to reduce the gap between the patients in need and organ transplants is to produce scaffolds made of decellularized extracellular matrix (d-ECM) and repopulate them with the appropriate cell types to regenerate the damaged organs. Decellularization is the process in which the ECM is isolated from its native cells and genetic material to produce a natural and biomimetic scaffold, able to avoid the immune response and rejection once implanted in the patients21,22,23. The ECM thus obtained can then be repopulated to produce functional tissue. The major issue when developing a d-ECM is the method. For any decellularization technique, the primary goal remains the preservation of the native ECM composition, stiffness, and 3D structure, and all strategies have both benefits and drawbacks. Because the elimination of cellular content and DNA from the tissue requires the use of chemical or physical agents, or the combination of both, each decellularization procedure causes, to different degrees, the disruption of the ECM. Hence, it is crucial to minimize the damage to the ECM24,25,26.
Native ECM utilization as a platform for the reconstitution of native ECM in vitro is highly desirable. For this purpose, several decellularization protocols have been applied to a wide range of tissues27,28,29,30. In fact, since the early stages of decellularization research and ECM development, several tissues, such as arteries, aortic valves, and peripheral nerves from both animals and humans, have been decellularized, and some d-ECMs are still commercially available and used for tissue replacement or wound healing31,32,33. Recently, human skin has also emerged as a suitable candidate to produce decellularized scaffolds for cardiac repair owing to its composition and mechanical properties-able to boost the regenerative potential of cardiac progenitor cells (CPCs) and adapt to cardiac contractility34. This paper describes a simple and fast protocol to produce decellularized scaffolds from adult human skin, allowing the development of a d-ECM with well-preserved architecture.
The specimens from human tissue were collected according to the principles of the Declaration of Helsinki and observing University Hospital "Federico II" guidelines. All patients involved in this study provided written consent forms.
1. Preparation of solutions
2. Day 1 - start the decellularization procedure.
3. Preparation of skin samples
4. Day 2 - check the state of the skin samples.
5. Day 3 - a final wash of the samples
The aim of the protocol was to obtain a skin d-ECM sample from biological tissue, maintaining a well-organized 3D structure and well-preserved content of biological molecules (Figure 1). This method is primarily based on the constant stirring of the samples in a solution containing the combination of two detergents, Triton X-100 and SDS, thus preserving the biological and structural features typical of the native tissue and reducing the time of exposure during the decellularization process. ...
Although the protocol described above has been optimized and improved compared to previously published protocols, it presents a few critical steps that need attention and precision. The formation of foam must be avoided during the preparation of the decellularizing solution to prevent incorrect dilution of the detergents. This could be addressed by gently pouring the solutions and making them flow along the inner side of the cylinder. Furthermore, care must be taken when manually removing fat tissue from the samples, as ...
The authors have no conflicts of interest to disclose.
None
Name | Company | Catalog Number | Comments |
0.9% NaCl isotonic Physiological solution | Sigma-Aldrich | S8776 | 0.9% in water |
1 L beaker | VWR | 511-0318 | Clean and autoclave before use |
10 mL serological pipet | Falcon | 357551 | Sterile, polystyrene |
100 mm plates | Falcon | 351029 | Treated, sterile cell culture dish |
15 mL sterile tubes | Falcon | 352097 | Centrifuge sterile tubes, polypropylene |
1 L graduated cylinder | VWR | 612-1524 | Clean and autoclave before use |
2 L bottle | VWR | 215-1596 | Clean and autoclave before use |
25 mL serological pipet | Falcon | 357525 | Sterile, polystyrene |
2 L graduated cylinder | VWR | 612-3072 | Clean and autoclave before use |
500 mL beaker | VWR | 511-0317 | Clean and autoclave before use |
Amphotericin B | Sigma-Aldrich | Y0000005 | Powder |
Dissecting board | VWR | 100498-398 | Made of high-density polyethylene. |
Dissecting scalpel | VWR | 233-5526 | Sterile and disposable |
Embedding cassettes | Diapath | 070191 | External dimensions: 40x26x7 mm (WxDxH) |
Fine forceps | VWR | 232-1317 | Clean and autoclave before use |
Funnel | VWR | 221-1861 | Clean and autoclave before use |
Hexagonal weighing boats size M | Sigma-Aldrich | Z708585 | Hexagonal, polystyrene, 51 mm Bottom I.D., 64 mm Top I.D. |
Hexagonal weighing boats size S | Sigma-Aldrich | Z708577 | Hexagonal, polystyrene, 25 mm Bottom I.D., 38 mm Top I.D. |
Large surgical scissors | VWR | 233-1211 | Clean and autoclave before use |
Long forceps | VWR | 232-0096 | Clean and autoclave before use |
Penicillin and Streptomycin | Sigma-Aldrich | P4333-100ml | Stabilized, with 10.000 units penicillin and 10 mg streptomycin/mL, 0.1 μm filtered. Store at -20°C. The solution should be aliquoted into smaller working volumes to avoid repeated freeze/thaw cycles Solution. |
Pipette gun | Eppendorf | 613-2795 | Eppendorf Easypet® 3 |
Plastic tray | VWR | BELAH162620000 | Corrosion-proof polypropylene plastic tray |
Potassium Chloride | Sigma-Aldrich | P9333 | Powder |
Potassium Phosphate Monobasic | Sigma-Aldrich | P5665 | Powder |
Sodium Chloride | Sigma-Aldrich | S7653 | Powder |
Sodium Dodecyl Sulfate | Sigma-Aldrich | 62862 | Powder |
Sodium Phosphate Dibasic | Sigma-Aldrich | 94046 | Powder |
Spatula | VWR | RSGA038.210 | Clean and autoclave before use |
Spoon | VWR | 231-1314 | Clean and autoclave before use |
Stir bar | VWR | 442-0362 | Clean and autoclave before use |
Stir bar retriever | VWR | 89026-262 | Molded in pure, FDA-approved PTFE |
Triton X-100 | Sigma-Aldrich | 9002-93-1 | Liquid |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved