Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

High-precision micro-displacement measurement is significant in the field of aerospace engineering, ultra-precision machining, and micro-assembly. The present protocol describes measuring micro displacements based on the shadow technique.

Abstract

The precision measurement of micro displacement is important in scientific and industrial fields. However, it is a tough challenge due to the complex design and the high cost of measuring instruments. Inspired by the shadow formed from water striders walking on a water surface under sunlight, a micro-displacement measurement method was proposed. Water strider legs with superhydrophobic properties bend the water surface. The curved surface of the water refracts sunlight, creating a shadow with a bright edge at the bottom of the pond. The shadow size is generally larger than the indentation depth of the legs from the water surface. In the micro-displacement measurement system, the applied displacement is proportional to the change in the diameter of the shadow. The presented study proposes a micro-displacement measurement procedure based on this shadow technique. The displacement sensitivity can reach 10.0 nm/pixel in the range of 5 µm. This system is simple to construct, low cost, and has high precision with good linear performance. The method provides a convenient additional option to measure micro-displacement.

Introduction

Precise displacement measurements play a vital role in the fields of aerospace engineering1, ultra-precision machining2, and micro-assembly3. Structural deformation must be measured precisely for structural health monitoring4. However, micro-displacement measurements with high precision remain a tough challenge due to the complex design and high cost of the measuring instruments5.

The micro-displacement measurement technique can be divided into conventional and non-conventional methods. Conventional methods, such as magnet....

Protocol

1. Preparation of the PDMS piece

  1. Prepare polydimethylsiloxane (PDMS, see Table of Materials) polymer by weighing the base and the curing agent (using a weighing balance) at a ratio of 30:1 in a cuboid polycarbonate (PC) container.
    NOTE: The container size is 60 mm × 45 mm × 15 mm. The height of the mixture is about 10 mm.
  2. Mix the PDMS mixture in a blender for about 20 min until it is filled with bubbles.
  3. Use a vacuum pump to remove bubbles.......

Representative Results

Following the protocol, the sensitivity of the micro-displacement measurement system can be calibrated, and the micro displacement can be measured. The shadow method in the micro-displacement measurement is presented as follows. Figure 3 shows the travel path of parallel light through the PDMS deformed surface due to the applied displacement. The refraction of parallel light forms a shadow having a bright edge. The explicit solution of displacements z(x) of the PDMS surface.......

Discussion

This protocol proposed a micro-displacement measurement system based on the shadow technique. The displacement calibration is the critical step within the protocol to obtain the displacement sensitivity and the measuring range. The displacement sensitivity can be improved by reducing the diameters of the cylindrical legs and that of the parallel light beam and increasing the working distance based on Equation 4. Furthermore, the pixel size and the resolution of the camera, as well as the accuracy of image processing, are.......

Acknowledgements

We thank the National Key Research and Development Program of China (No 2021YFC2202702) for funding this work.

....

Materials

NameCompanyCatalog NumberComments
Aperture diaphragmProcessed by high precision grindingThe diameter of the aperture is 0.7 mm.
CameraCanon EOS80DThe pixel size and the resolution of the camera are about 3.72 μm and 4000 × 6000, respectively.
HALCONMVTec Software GmbH18.11MVTec HALCON is the comprehensive standard software for machine vision with an integrated development environment (HDevelop) that is used worldwide.
Motorized linear stageZolixTSA50-CResolution 0.625 μm
Parallel light sourceOriental Technology (Shanghai) Co, Ltd.BTPL-50GThe peak wavelength is 523 nm.
Polydimethylsiloxane (PDMS)Dow CorningSylgard 184PDMS is a transparent silicon-based crosslinked polymer.
Vacuum pumpSHANGHAI LICHEN-BX INSTRUMENT TECHONOLOGY CO.,Ltd2XZ-6BThe pumping rate is 6 L/s.The ultimate vacuum is ≤1 Pa 
Vertical precision positionerPIP-620.ZCDThe resolution is 0.2 nm in the range of 50 μm.
Workbench with three rigid cylindrical legsProcessed by high precision grindingThe diameter of legs is 0.5 mm. The legs are distributed on the trisection points of a circle with a radius of 14 mm

References

  1. Zhang, H., Li, D. T., Li, H. Development of a cantilever beam thrust stand for electric propulsion thrusters. Review of Scientific Instruments. 91 (11), 115104 (2020).
  2. Huang, Y., et al. An opti....

Explore More Articles

Micro displacement MeasurementShadow TechniqueWater StriderSuperhydrophobicRefractionDisplacement SensitivityLow CostHigh Precision

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved