The rapid development, small size and transparency of zebrafish are tremendous advantages for the study of innate immune control of infection1-4. Here we demonstrate techniques for infecting zebrafish larvae using the fungal pathogen Candida albicans by microinjection, methodology recently used to implicate phagocyte NADPH oxidase activity in control of fungal dimorphism5.
The innate immune response protects organisms against pathogen infection. A critical component of the innate immune response, the phagocyte respiratory burst, generates reactive oxygen species that kill invading microorganisms. We describe a respiratory burst assay that quantifies reactive oxygen species produced when the innate immune response is chemically induced.
We demonstrate the use of fluorescence photo activation localization microscopy (FPALM) to simultaneously image multiple types of fluorescently labeled molecules within cells. The techniques described yield the localization of thousands to hundreds of thousands of individual fluorescent labeled proteins, with a precision of tens of nanometers within single cells.
In vivo spatio-temporal interactions of pathogen and immune defenses at the mucosal level are not easily imaged in existing vertebrate hosts. The method presented here describes a versatile platform to study mucosal candidiasis in live vertebrates using the swimbladder of the juvenile zebrafish as an infection site.
Repeated soil sampling has recently been shown to be an effective way to monitor forest soil change over years and decades. To support its use, a protocol is presented that synthesizes the latest information on soil resampling methods to aid in the design and implementation of successful soil monitoring programs.
Systemic and localized zebrafish infection models for human influenza A virus are demonstrated. Using a systemic infection model, zebrafish can be used to screen antiviral drugs. Using a localized infection model, zebrafish can be used to characterize host immune cell responses.
Measuring heart rate during a thermal challenge provides insight into physiological responses of organisms as a consequence of acute environmental change. Using the American lobster (Homarus americanus) as a model organism, this protocol describes the use of impedance pneumography as a relatively noninvasive and nonlethal approach to measure heart rate in late stage invertebrates.
Wound-induced polyploidization is a conserved tissue repair strategy where cells grow in size instead of dividing to compensate for cell loss. Here is a detailed protocol on how to use the fruit fly as a model to measure ploidy and its genetic regulation in epithelial wound repair.
The ability to permanently mark stem cells and their progeny with a fluorophore using an inducible transgenic lineage tracing mouse line allows for spatial and temporal analysis of activation, proliferation, migration, and/or differentiation in vivo. Lineage tracing can reveal novel information about lineage commitment, response to intervention(s), and multipotency.
ACERCA DE JoVE
Copyright © 2024 MyJoVE Corporation. Todos los derechos reservados