Iniciar sesión

The Graduate Center of the City University of New York

4 ARTICLES PUBLISHED IN JoVE

image

Medicine

A "Patient-Like" Orthotopic Syngeneic Mouse Model of Hepatocellular Carcinoma Metastasis
Dibash K. Das 1,2, Victoria Durojaiye 1, Adeodat Ilboudo 1, Michelle K. Naidoo 1, Olorunseun Ogunwobi 1,2
1Department of Biological Sciences, Hunter College of the City University of New York, 2Departments of Biology and Biochemistry, The Graduate Center of the City University of New York

The metastatic spread of cancer is the major cause of cancer-related deaths. We provide an in-depth description of our survival surgery methodology for establishing a “patient-like” orthotopic syngeneic mouse model system for studying the mechanisms of metastasis in solid organ tumors.

image

Medicine

Isolation and Propagation of Circulating Tumor Cells from a Mouse Cancer Model
Dibash K. Das 1,2, Michelle K. Naidoo 1, Adeodat Ilboudo 1, Pascal DuBois 1, Victoria Durojaiye 1, Chen Liu 3, Olorunseun O. Ogunwobi 1,2
1Department of Biological Sciences, Hunter College of The City University of New York, 2Departments of Biology and Biochemistry, The Graduate Center of The City University of New York, 3Department of Pathology, Immunology, and Laboratory Medicine, University of Florida

Circulating tumor cells (CTCs) have been shown to play an important role in tumor metastasis. Here, a method for the isolation and propagation of CTCs from the whole blood of a syngeneic mouse tumor model of hepatocellular carcinoma (HCC) metastasis is described.

image

Cancer Research

Surface-enhanced Resonance Raman Scattering Nanoprobe Ratiometry for Detecting Microscopic Ovarian Cancer via Folate Receptor Targeting
Chrysafis Andreou 1, Anton Oseledchyk 1, Fay Nicolson 1, Naxhije Berisha 1,2, Suchetan Pal 1, Moritz F. Kircher 1,3,4,5,6,7
1Department of Radiology, Memorial Sloan Kettering Cancer Center, 2Department of Chemistry, The Graduate Center of the City University of New York, 3Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 4Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, 5Gerstner Sloan Kettering Graduate School of Biomedical Sciences, 6Department of Radiology, Weill Cornell Medical College of Cornell University, 7Dana-Farber Cancer Institute and Harvard Medical Center

Ovarian cancer forms metastases throughout the peritoneal cavity. Here, we present a protocol to make and use folate-receptor targeted surface-enhanced resonance Raman scattering nanoprobes that reveal these lesions with high specificity via ratiometric imaging. The nanoprobes are administered intraperitoneally to living mice, and the derived images correlate well with histology.

image

Bioengineering

A Tripeptide-Stabilized Nanoemulsion of Oleic Acid
Sylwia A. Dragulska 1, Marek T. Wlodarczyk 1,2, Mina Poursharifi 1,3, John A. Martignetti 4,5,6, Aneta J. Mieszawska 1,2,3
1Department of Chemistry, Brooklyn College, The City University of New York, 2Ph.D. Program in Chemistry, The Graduate Center of The City University of New York, 3Ph.D. Program in Biochemistry, The Graduate Center of The City University of New York, 4Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 5Women's Health Research Institute, Icahn School of Medicine at Mount Sinai, 6Laboratory for Translational Research, Western Connecticut Health Network

This protocol describes an efficient method to synthesize a nanoemulsion of an oleic acids-platinum(II) conjugate stabilized with a lysine-tyrosine-phenylalanine (KYF) tripeptide. The nanoemulsion forms under mild synthetic conditions via self-assembly of the KYF and the conjugate.

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados