Iniciar sesión

La capacidad de calor específica de una sustancia se refiere a la cantidad de energía necesaria para calentar un gramo de la sustancia en un grado. El agua tiene una alta capacidad de calor, por lo que se necesita mucho calor para aumentar su temperatura. Del mismo modo, el agua debe perder mucho calor para que su temperatura disminuya, por lo que también se enfría lentamente una vez calentada. Los metales, en comparación, tienen una baja capacidad de calor: se calientan rápidamente y se enfrían rápidamente.

La capacidad de calor específica se define como la cantidad de energía necesaria para elevar la temperatura de un gramo de una sustancia en un grado Celsius (1 oC). Por ejemplo, aumentar la temperatura de un gramo de agua en 1 oC requiere una caloría de energía térmica. La capacidad de calor específica a menudo se representa en gramos, grados Celsius y calorías, pero también se puede expresar en kilogramos, Kelvin (K), y julios (entre otras unidades). La capacidad de calor específica del agua es de una caloría/gramo de C, o 4186 julios/kilogramo K. El oro sólido tiene una capacidad de calor específica de 0,03 calorías/gramo de C, o 129 julios/kilogramo K. El oro, entonces, tiene una capacidad de calor específica menor que el agua.

Naturaleza práctica

La alta capacidad de calor del agua ayuda a modular las temperaturas ambientales extremas. Las ciudades cercanas a grandes masas de agua tienen cambios de temperatura más pequeños tanto a diario como estacionalmente. Durante el día, el agua cercana absorbe la energía térmica, enfriando la tierra circundante. Por la noche, el agua libera su energía térmica, manteniendo el área más caliente. Las ciudades alejadas de grandes masas de agua pueden experimentar grandes oscilaciones a temperatura diaria y estacional. La arena y las rocas tienen menores capacidades de calor, por lo que se calientan rápidamente durante el día y liberan calor rápidamente por la noche.

En el espacio, el agua hierve y luego se congela. Esto sucede en parte debido a la alta capacidad de calor del agua. En el espacio, el agua hierve primero debido a la presión extremadamente baja. En este estado gaseoso, las moléculas de vapor de agua están más separadas y pueden perder calor rápidamente en las temperaturas muy frías del espacio. El vapor de agua entonces se congela en cristales, un proceso llamado sublimación.

Tags
Specific HeatHeat EnergyTemperature ChangeMassWaterRocksMolar MassSiliconeSandstoneMoleculesGramAbsorb EnergyRegulate TemperatureCoastal AreasLandlocked PlacesExtreme TemperaturesSubstanceCaloriesJoulesKilogramsKelvin

Del capítulo 2:

article

Now Playing

2.20 : El calor específico

Química de la vida

61.8K Vistas

article

2.1 : La tabla periódica y los elementos organismales.

Química de la vida

168.9K Vistas

article

2.2 : Estructura atómica

Química de la vida

189.0K Vistas

article

2.3 : El comportamiento de electrones

Química de la vida

97.9K Vistas

article

2.4 : Modelo orbital de electrones

Química de la vida

66.8K Vistas

article

2.5 : Las moléculas y los compuestos

Química de la vida

95.7K Vistas

article

2.6 : Las formas moleculares

Química de la vida

56.3K Vistas

article

2.7 : Los Esqueletos de carbono

Química de la vida

106.7K Vistas

article

2.8 : Las reacciones químicas

Química de la vida

87.7K Vistas

article

2.9 : Isótopos

Química de la vida

56.1K Vistas

article

2.10 : Los enlaces covalentes

Química de la vida

144.3K Vistas

article

2.11 : Los enlaces iónicos

Química de la vida

116.8K Vistas

article

2.12 : Los enlaces de hidrógeno

Química de la vida

119.6K Vistas

article

2.13 : Las Interacciones de Van der Waals

Química de la vida

62.4K Vistas

article

2.14 : Los Estados del agua

Química de la vida

50.2K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados