S'identifier

La capacité thermique spécifique à une substance se rapporte à la quantité d’énergie nécessaire pour chauffer un gramme de la substance d’un degré. L’eau a une grande capacité thermique ; il faut donc beaucoup de chaleur pour augmenter sa température. De même, l’eau doit perdre beaucoup de chaleur pour que sa température diminue, de sorte qu’elle refroidit aussi lentement une fois chauffée. Les métaux, par comparaison, ont une faible capacité thermique : ils chauffent rapidement et se refroidissent rapidement.

La capacité thermique spécifique est définie comme la quantité d’énergie nécessaire pour augmenter la température d’un gramme d’une substance d’un degré Celsius (1 °C). Par exemple, augmenter la température d’un gramme d’eau de 1 °C nécessite une calorie d’énergie thermique. La capacité thermique spécifique est souvent représentée en grammes, degrés Celsius et calories, mais elle peut être exprimée également en kilogrammes, Kelvin (K) et joules (entre autres unités). La capacité thermique spécifique de l’eau est d’une calorie/gramme °C, ou 4186 joules/kilogramme K. L’or massif a une capacité thermique spécifique d’environ ~0,03 calories/gramme °C, ou 129 joules/kilogramme K. L’or a donc une capacité thermique spécifique inférieure à celle de l’eau.

Une nature pratique

La grande capacité thermique de l’eau aide à moduler les températures environnementales extrêmes. Les villes situées près de grandes étendues d’eau ont de plus petites variations de température, tant par jour que de façon saisonnière. Pendant la journée, l’eau à proximité absorbe l’énergie thermique, refroidissant les terres environnantes. La nuit, l’eau libère son énergie thermique, ce qui maintient la zone plus chaude. Les villes éloignées des grands plans d’eau peuvent connaître de grandes fluctuations de température quotidienne et saisonnière. Le sable et les roches ont des capacités thermique plus faibles, de sorte qu’ils chauffent rapidement pendant la journée et libèrent la chaleur rapidement la nuit.

Dans l’espace, l’eau bout puis gèle. Cela se produit en partie à cause de la forte capacité thermique de l’eau. Dans l’espace, l’eau bout d’abord à cause de la pression extrêmement basse. Dans cet état gazeux, les molécules de vapeur d’eau sont plus éloignées et peuvent perdre de la chaleur rapidement dans les températures très froides de l’espace. La vapeur d’eau gèle alors en cristaux, un processus appelé sublimation inverse.

Tags
Specific HeatHeat EnergyTemperature ChangeMassWaterRocksMolar MassSiliconeSandstoneMoleculesGramAbsorb EnergyRegulate TemperatureCoastal AreasLandlocked PlacesExtreme TemperaturesSubstanceCaloriesJoulesKilogramsKelvin

Du chapitre 2:

article

Now Playing

2.20 : Chaleur spécifique

Chimie de la vie

61.8K Vues

article

2.1 : Le tableau périodique et les éléments organiques

Chimie de la vie

168.9K Vues

article

2.2 : Structure atomique

Chimie de la vie

189.0K Vues

article

2.3 : Comportement des électrons

Chimie de la vie

97.9K Vues

article

2.4 : Modèle orbital d'électrons

Chimie de la vie

66.8K Vues

article

2.5 : Molécules et composés

Chimie de la vie

95.7K Vues

article

2.6 : Formes moléculaires

Chimie de la vie

56.3K Vues

article

2.7 : Squelettes de carbone

Chimie de la vie

106.7K Vues

article

2.8 : Réactions chimiques

Chimie de la vie

87.7K Vues

article

2.9 : Isotopes

Chimie de la vie

56.1K Vues

article

2.10 : Liaisons covalentes

Chimie de la vie

144.3K Vues

article

2.11 : Liaisons ioniques

Chimie de la vie

116.8K Vues

article

2.12 : Liaisons hydrogène

Chimie de la vie

119.6K Vues

article

2.13 : Interactions de Van der Waals

Chimie de la vie

62.4K Vues

article

2.14 : États de l'eau

Chimie de la vie

50.2K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.