JoVE Logo

Iniciar sesión

3.8 : Energía libre y equilibrio

The free energy change for a process may be viewed as a measure of its driving force. A negative value for ΔG represents a driving force for the process in the forward direction, while a positive value represents a driving force for the process in the reverse direction. When ΔG is zero, the forward and reverse driving forces are equal, and the process occurs in both directions at the same rate (the system is at equilibrium).

The reaction quotient, Q, is a convenient measure of the status of an equilibrium system. Q is the numerical value of the mass action expression for the system, and it can be used to identify the direction in which a reaction will proceed in order to achieve equilibrium. When Q is lesser than the equilibrium constant, K, the reaction will proceed in the forward direction until equilibrium is reached and Q = K. Conversely, if Q > K, the process will proceed in the reverse direction until equilibrium is achieved.

The free energy change for a process taking place with reactants and products present under nonstandard conditions (pressures other than 1 bar; concentrations other than 1 M) is related to the standard free energy change according to this equation:

ΔG = ΔG° + RT lnQ

R is the gas constant (8.314 J/K mol), T is the kelvin or absolute temperature, and Q is the reaction quotient. For gas-phase equilibria, the pressure-based reaction quotient, QP, is used. The concentration-based reaction quotient, QC, is used for condensed phase equilibria.

For a system at equilibrium, Q = K and ΔG = 0, and the previous equation may be written as

0 = ΔG° + RT lnK (at equilibrium)

ΔG° = −RT lnK

This form of the equation provides a useful link between these two essential thermodynamic properties, and it can be used to derive equilibrium constants from standard free energy changes and vice versa.

This text is adapted from Openstax, Chemistry 2e, Section 16.4: Free Energy.

Tags

Free EnergyEquilibriumReaction QuotientStandard Free Energy ChangeGas ConstantTemperaturePressure based Reaction QuotientConcentration based Reaction QuotientEquilibrium Constant

Del capítulo 3:

article

Now Playing

3.8 : Energía libre y equilibrio

Energía y catálisis

6.0K Vistas

article

3.1 : La primera ley de la termodinámica

Energía y catálisis

5.5K Vistas

article

3.2 : La segunda ley de la termodinámica

Energía y catálisis

5.1K Vistas

article

3.3 : Entalpía en el interior de la célula

Energía y catálisis

5.8K Vistas

article

3.4 : Entropía en el interior de la célula

Energía y catálisis

10.3K Vistas

article

3.5 : Una introducción a la energía libre

Energía y catálisis

8.2K Vistas

article

3.6 : Reacciones endergónicas y exergónicas en la célula

Energía y catálisis

14.7K Vistas

article

3.7 : La constante de unión de equilibrio y la fuerza de unión

Energía y catálisis

9.0K Vistas

article

3.9 : Célula fuera del equilibrio

Energía y catálisis

4.1K Vistas

article

3.10 : Oxidación y reducción de moléculas orgánicas

Energía y catálisis

6.1K Vistas

article

3.11 : Introducción a las enzimas

Energía y catálisis

17.0K Vistas

article

3.12 : Enzimas y energía de activación

Energía y catálisis

11.6K Vistas

article

3.13 : Introducción a la cinética enzimática

Energía y catálisis

19.6K Vistas

article

3.14 : Número de recambio y eficacia catalítica

Energía y catálisis

9.9K Vistas

article

3.15 : Enzimas catalíticamente perfectas

Energía y catálisis

3.9K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados