Anmelden

The free energy change for a process may be viewed as a measure of its driving force. A negative value for ΔG represents a driving force for the process in the forward direction, while a positive value represents a driving force for the process in the reverse direction. When ΔG is zero, the forward and reverse driving forces are equal, and the process occurs in both directions at the same rate (the system is at equilibrium).

The reaction quotient, Q, is a convenient measure of the status of an equilibrium system. Q is the numerical value of the mass action expression for the system, and it can be used to identify the direction in which a reaction will proceed in order to achieve equilibrium. When Q is lesser than the equilibrium constant, K, the reaction will proceed in the forward direction until equilibrium is reached and Q = K. Conversely, if Q > K, the process will proceed in the reverse direction until equilibrium is achieved.

The free energy change for a process taking place with reactants and products present under nonstandard conditions (pressures other than 1 bar; concentrations other than 1 M) is related to the standard free energy change according to this equation:

ΔG = ΔG° + RT lnQ

R is the gas constant (8.314 J/K mol), T is the kelvin or absolute temperature, and Q is the reaction quotient. For gas-phase equilibria, the pressure-based reaction quotient, QP, is used. The concentration-based reaction quotient, QC, is used for condensed phase equilibria.

For a system at equilibrium, Q = K and ΔG = 0, and the previous equation may be written as

0 = ΔG° + RT lnK (at equilibrium)

ΔG° = −RT lnK

This form of the equation provides a useful link between these two essential thermodynamic properties, and it can be used to derive equilibrium constants from standard free energy changes and vice versa.

This text is adapted from Openstax, Chemistry 2e, Section 16.4: Free Energy.

Tags
Free EnergyEquilibriumReaction QuotientStandard Free Energy ChangeGas ConstantTemperaturePressure based Reaction QuotientConcentration based Reaction QuotientEquilibrium Constant

Aus Kapitel 3:

article

Now Playing

3.8 : Freie Energie und Gleichgewicht

Energie und Katalyse

5.9K Ansichten

article

3.1 : Der erste Hauptsatz der Thermodynamik

Energie und Katalyse

5.2K Ansichten

article

3.2 : Der zweite Hauptsatz der Thermodynamik

Energie und Katalyse

4.8K Ansichten

article

3.3 : Enthalpie in der Zelle

Energie und Katalyse

5.6K Ansichten

article

3.4 : Entropie innerhalb der Zelle

Energie und Katalyse

10.1K Ansichten

article

3.5 : Eine Einführung in die Freie Energie

Energie und Katalyse

7.9K Ansichten

article

3.6 : Endergone und exergone Reaktionen in der Zelle

Energie und Katalyse

13.9K Ansichten

article

3.7 : Die Gleichgewichtsbindungskonstante und die Bindungsstärke

Energie und Katalyse

8.9K Ansichten

article

3.9 : Ungleichgewicht in der Zelle

Energie und Katalyse

4.0K Ansichten

article

3.10 : Oxidation und Reduktion von organischen Molekülen

Energie und Katalyse

5.7K Ansichten

article

3.11 : Einführung in Enzyme

Energie und Katalyse

16.4K Ansichten

article

3.12 : Enzyme und Aktivierungsenergie

Energie und Katalyse

11.2K Ansichten

article

3.13 : Einführung in die Enzymkinetik

Energie und Katalyse

19.2K Ansichten

article

3.14 : Wechselzahl und katalytische Effizienz

Energie und Katalyse

9.6K Ansichten

article

3.15 : Katalytisch perfekte Enzyme

Energie und Katalyse

3.8K Ansichten

See More

JoVE Logo

Datenschutz

Nutzungsbedingungen

Richtlinien

Forschung

Lehre

ÜBER JoVE

Copyright © 2025 MyJoVE Corporation. Alle Rechte vorbehalten