로그인

The free energy change for a process may be viewed as a measure of its driving force. A negative value for ΔG represents a driving force for the process in the forward direction, while a positive value represents a driving force for the process in the reverse direction. When ΔG is zero, the forward and reverse driving forces are equal, and the process occurs in both directions at the same rate (the system is at equilibrium).

The reaction quotient, Q, is a convenient measure of the status of an equilibrium system. Q is the numerical value of the mass action expression for the system, and it can be used to identify the direction in which a reaction will proceed in order to achieve equilibrium. When Q is lesser than the equilibrium constant, K, the reaction will proceed in the forward direction until equilibrium is reached and Q = K. Conversely, if Q > K, the process will proceed in the reverse direction until equilibrium is achieved.

The free energy change for a process taking place with reactants and products present under nonstandard conditions (pressures other than 1 bar; concentrations other than 1 M) is related to the standard free energy change according to this equation:

ΔG = ΔG° + RT lnQ

R is the gas constant (8.314 J/K mol), T is the kelvin or absolute temperature, and Q is the reaction quotient. For gas-phase equilibria, the pressure-based reaction quotient, QP, is used. The concentration-based reaction quotient, QC, is used for condensed phase equilibria.

For a system at equilibrium, Q = K and ΔG = 0, and the previous equation may be written as

0 = ΔG° + RT lnK (at equilibrium)

ΔG° = −RT lnK

This form of the equation provides a useful link between these two essential thermodynamic properties, and it can be used to derive equilibrium constants from standard free energy changes and vice versa.

This text is adapted from Openstax, Chemistry 2e, Section 16.4: Free Energy.

Tags
Free EnergyEquilibriumReaction QuotientStandard Free Energy ChangeGas ConstantTemperaturePressure based Reaction QuotientConcentration based Reaction QuotientEquilibrium Constant

장에서 3:

article

Now Playing

3.8 : Free Energy and Equilibrium

Energy and Catalysis

5.9K Views

article

3.1 : 열역학 제1법칙

Energy and Catalysis

5.2K Views

article

3.2 : 열역학 제2법칙

Energy and Catalysis

4.8K Views

article

3.3 : 세포 내 엔탈피

Energy and Catalysis

5.6K Views

article

3.4 : 세포 내의 엔트로피

Energy and Catalysis

10.1K Views

article

3.5 : 자유 에너지 소개

Energy and Catalysis

7.9K Views

article

3.6 : 세포 내에서의 엔더곤 및 엑세르고닉 반응

Energy and Catalysis

13.9K Views

article

3.7 : 평형 결합 상수와 결합 강도

Energy and Catalysis

8.9K Views

article

3.9 : 세포의 비평형

Energy and Catalysis

4.0K Views

article

3.10 : 유기 분자의 산화 및 환원

Energy and Catalysis

5.7K Views

article

3.11 : 효소 소개

Energy and Catalysis

16.4K Views

article

3.12 : 효소와 활성화 에너지

Energy and Catalysis

11.2K Views

article

3.13 : Introduction to Enzyme Kinetics(효소 반응속도학 소개)

Energy and Catalysis

19.2K Views

article

3.14 : Turnover Number and Catalytic Efficiency(회전율 수치와 촉매 효율)

Energy and Catalysis

9.6K Views

article

3.15 : 촉매적으로 완벽한 효소

Energy and Catalysis

3.8K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유