JoVE Logo

Accedi

3.8 : Free Energy and Equilibrium

The free energy change for a process may be viewed as a measure of its driving force. A negative value for ΔG represents a driving force for the process in the forward direction, while a positive value represents a driving force for the process in the reverse direction. When ΔG is zero, the forward and reverse driving forces are equal, and the process occurs in both directions at the same rate (the system is at equilibrium).

The reaction quotient, Q, is a convenient measure of the status of an equilibrium system. Q is the numerical value of the mass action expression for the system, and it can be used to identify the direction in which a reaction will proceed in order to achieve equilibrium. When Q is lesser than the equilibrium constant, K, the reaction will proceed in the forward direction until equilibrium is reached and Q = K. Conversely, if Q > K, the process will proceed in the reverse direction until equilibrium is achieved.

The free energy change for a process taking place with reactants and products present under nonstandard conditions (pressures other than 1 bar; concentrations other than 1 M) is related to the standard free energy change according to this equation:

ΔG = ΔG° + RT lnQ

R is the gas constant (8.314 J/K mol), T is the kelvin or absolute temperature, and Q is the reaction quotient. For gas-phase equilibria, the pressure-based reaction quotient, QP, is used. The concentration-based reaction quotient, QC, is used for condensed phase equilibria.

For a system at equilibrium, Q = K and ΔG = 0, and the previous equation may be written as

0 = ΔG° + RT lnK (at equilibrium)

ΔG° = −RT lnK

This form of the equation provides a useful link between these two essential thermodynamic properties, and it can be used to derive equilibrium constants from standard free energy changes and vice versa.

This text is adapted from Openstax, Chemistry 2e, Section 16.4: Free Energy.

Tags

Free EnergyEquilibriumReaction QuotientStandard Free Energy ChangeGas ConstantTemperaturePressure based Reaction QuotientConcentration based Reaction QuotientEquilibrium Constant

Dal capitolo 3:

article

Now Playing

3.8 : Free Energy and Equilibrium

Energy and Catalysis

6.0K Visualizzazioni

article

3.1 : Il Primo F.L. della Termodinamica

Energy and Catalysis

5.5K Visualizzazioni

article

3.2 : Il secondo principio della termodinamica

Energy and Catalysis

5.1K Visualizzazioni

article

3.3 : Entalpia all'interno della cellula

Energy and Catalysis

5.8K Visualizzazioni

article

3.4 : Entropia all'interno della cellula

Energy and Catalysis

10.3K Visualizzazioni

article

3.5 : Un'introduzione all'energia libera

Energy and Catalysis

8.2K Visualizzazioni

article

3.6 : Reazioni endergoniche ed esoergoniche in cellula

Energy and Catalysis

14.7K Visualizzazioni

article

3.7 : La costante di legame all'equilibrio e la forza di legame

Energy and Catalysis

9.0K Visualizzazioni

article

3.9 : Non equilibrio nella cellula

Energy and Catalysis

4.1K Visualizzazioni

article

3.10 : Ossidazione e riduzione di molecole organiche

Energy and Catalysis

6.1K Visualizzazioni

article

3.11 : Introduzione agli enzimi

Energy and Catalysis

17.0K Visualizzazioni

article

3.12 : Enzimi ed energia di attivazione

Energy and Catalysis

11.6K Visualizzazioni

article

3.13 : Introduzione alla cinetica enzimatica

Energy and Catalysis

19.6K Visualizzazioni

article

3.14 : Numero di fatturato ed efficienza catalitica

Energy and Catalysis

9.9K Visualizzazioni

article

3.15 : Enzimi cataliticamente perfetti

Energy and Catalysis

3.9K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati