JoVE Logo

Iniciar sesión

Enzyme kinetics studies the rates of biochemical reactions. Scientists monitor the reaction rates for a particular enzymatic reaction at various substrate concentrations. Additional trials with inhibitors or other molecules that affect the reaction rate may also be performed.

The experimenter can then plot the initial reaction rate or velocity (Vo) of a given trial against the substrate concentration ([S]) to obtain a graph of the reaction properties. For many enzymatic reactions involving a single substrate, this data fits the Michaelis-Menten equation, an equation derived by Leonor Michaelis and Maud Menten.

Eq1

The equation estimates the maximum velocity (Vmax) and the Michaelis constant (KM) for the enzyme being studied and is based on the following assumptions:

  1. No product is present at the start of the reaction.
  2. The rate of enzyme-substrate complex formation equals the rate of dissociation and breakdown into products.
  3. The enzyme concentration is minimal compared to the substrate concentration.
  4. Only the initial reaction rates are measured.
  5. The enzyme is present either in the free form or in the enzyme-substrate complex.

Different rearrangements of the Michaelis-Menten equation, such as the Lineweaver-Burke, Eadie-Hofsteot, and Hanes-Woolf plots, are alternate ways to graph kinetic parameters. The Lineweaver-Burke or double reciprocal plot is often used to estimate the KM and the Vmax. The plot uses the reciprocals values of the x and y-axis from the Michaelis-Menten plot. Mathematically, the y-intercept equals 1/Vmax, and the x-intercept equals −1/KM.

The Lineweaver-Burke plot can be used to visually differentiate between inhibitor types – competitive, non-competitive, and uncompetitive. Different rearrangements of the Michaelis-Menten equation, such as the Eadie-Hofstee and Hanes-Woolf plots, are also used to determine kinetic parameters.

Tags

Enzyme KineticsReaction RateSubstrate ConcentrationMichaelis Menten EquationVmaxKMLineweaver Burke PlotEadie Hofstee PlotHanes Woolf PlotEnzyme substrate ComplexInhibitor TypesCompetitive InhibitionNon competitive InhibitionUncompetitive Inhibition

Del capítulo 3:

article

Now Playing

3.13 : Introducción a la cinética enzimática

Energía y catálisis

19.5K Vistas

article

3.1 : La primera ley de la termodinámica

Energía y catálisis

5.3K Vistas

article

3.2 : La segunda ley de la termodinámica

Energía y catálisis

5.0K Vistas

article

3.3 : Entalpía en el interior de la célula

Energía y catálisis

5.7K Vistas

article

3.4 : Entropía en el interior de la célula

Energía y catálisis

10.2K Vistas

article

3.5 : Una introducción a la energía libre

Energía y catálisis

8.0K Vistas

article

3.6 : Reacciones endergónicas y exergónicas en la célula

Energía y catálisis

14.4K Vistas

article

3.7 : La constante de unión de equilibrio y la fuerza de unión

Energía y catálisis

8.9K Vistas

article

3.8 : Energía libre y equilibrio

Energía y catálisis

6.0K Vistas

article

3.9 : Célula fuera del equilibrio

Energía y catálisis

4.1K Vistas

article

3.10 : Oxidación y reducción de moléculas orgánicas

Energía y catálisis

5.9K Vistas

article

3.11 : Introducción a las enzimas

Energía y catálisis

16.8K Vistas

article

3.12 : Enzimas y energía de activación

Energía y catálisis

11.4K Vistas

article

3.14 : Número de recambio y eficacia catalítica

Energía y catálisis

9.7K Vistas

article

3.15 : Enzimas catalíticamente perfectas

Energía y catálisis

3.8K Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados