Oturum Aç

Enzyme kinetics studies the rates of biochemical reactions. Scientists monitor the reaction rates for a particular enzymatic reaction at various substrate concentrations. Additional trials with inhibitors or other molecules that affect the reaction rate may also be performed.

The experimenter can then plot the initial reaction rate or velocity (Vo) of a given trial against the substrate concentration ([S]) to obtain a graph of the reaction properties. For many enzymatic reactions involving a single substrate, this data fits the Michaelis-Menten equation, an equation derived by Leonor Michaelis and Maud Menten.

Eq1

The equation estimates the maximum velocity (Vmax) and the Michaelis constant (KM) for the enzyme being studied and is based on the following assumptions:

  1. No product is present at the start of the reaction.
  2. The rate of enzyme-substrate complex formation equals the rate of dissociation and breakdown into products.
  3. The enzyme concentration is minimal compared to the substrate concentration.
  4. Only the initial reaction rates are measured.
  5. The enzyme is present either in the free form or in the enzyme-substrate complex.

Different rearrangements of the Michaelis-Menten equation, such as the Lineweaver-Burke, Eadie-Hofsteot, and Hanes-Woolf plots, are alternate ways to graph kinetic parameters. The Lineweaver-Burke or double reciprocal plot is often used to estimate the KM and the Vmax. The plot uses the reciprocals values of the x and y-axis from the Michaelis-Menten plot. Mathematically, the y-intercept equals 1/Vmax, and the x-intercept equals −1/KM.

The Lineweaver-Burke plot can be used to visually differentiate between inhibitor types – competitive, non-competitive, and uncompetitive. Different rearrangements of the Michaelis-Menten equation, such as the Eadie-Hofstee and Hanes-Woolf plots, are also used to determine kinetic parameters.

Etiketler
Enzyme KineticsReaction RateSubstrate ConcentrationMichaelis Menten EquationVmaxKMLineweaver Burke PlotEadie Hofstee PlotHanes Woolf PlotEnzyme substrate ComplexInhibitor TypesCompetitive InhibitionNon competitive InhibitionUncompetitive Inhibition

Bölümden 3:

article

Now Playing

3.13 : Introduction to Enzyme Kinetics

Enerji ve Kataliz

19.2K Görüntüleme Sayısı

article

3.1 : Termodinamiğin Birinci Yasası

Enerji ve Kataliz

5.2K Görüntüleme Sayısı

article

3.2 : Termodinamiğin İkinci Yasası

Enerji ve Kataliz

4.8K Görüntüleme Sayısı

article

3.3 : Hücre İçindeki Entalpi

Enerji ve Kataliz

5.6K Görüntüleme Sayısı

article

3.4 : Hücre İçindeki Entropi

Enerji ve Kataliz

10.1K Görüntüleme Sayısı

article

3.5 : Serbest Enerjiye Giriş

Enerji ve Kataliz

7.9K Görüntüleme Sayısı

article

3.6 : Hücrede Endergonik ve Ekzergonik Reaksiyonlar

Enerji ve Kataliz

13.9K Görüntüleme Sayısı

article

3.7 : Denge Bağlanma Sabiti ve Bağlanma Kuvveti

Enerji ve Kataliz

8.9K Görüntüleme Sayısı

article

3.8 : Serbest Enerji ve Denge

Enerji ve Kataliz

5.9K Görüntüleme Sayısı

article

3.9 : Hücrede Dengesizlik

Enerji ve Kataliz

4.0K Görüntüleme Sayısı

article

3.10 : Organik Moleküllerin Oksidasyonu ve İndirgenmesi

Enerji ve Kataliz

5.7K Görüntüleme Sayısı

article

3.11 : Enzimlere Giriş

Enerji ve Kataliz

16.4K Görüntüleme Sayısı

article

3.12 : Enzimler ve Aktivasyon Enerjisi

Enerji ve Kataliz

11.2K Görüntüleme Sayısı

article

3.14 : Devir Sayısı ve Katalitik Verimlilik

Enerji ve Kataliz

9.6K Görüntüleme Sayısı

article

3.15 : Katalitik Olarak Mükemmel Enzimler

Enerji ve Kataliz

3.8K Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır