Accedi

Enzyme kinetics studies the rates of biochemical reactions. Scientists monitor the reaction rates for a particular enzymatic reaction at various substrate concentrations. Additional trials with inhibitors or other molecules that affect the reaction rate may also be performed.

The experimenter can then plot the initial reaction rate or velocity (Vo) of a given trial against the substrate concentration ([S]) to obtain a graph of the reaction properties. For many enzymatic reactions involving a single substrate, this data fits the Michaelis-Menten equation, an equation derived by Leonor Michaelis and Maud Menten.

Eq1

The equation estimates the maximum velocity (Vmax) and the Michaelis constant (KM) for the enzyme being studied and is based on the following assumptions:

  1. No product is present at the start of the reaction.
  2. The rate of enzyme-substrate complex formation equals the rate of dissociation and breakdown into products.
  3. The enzyme concentration is minimal compared to the substrate concentration.
  4. Only the initial reaction rates are measured.
  5. The enzyme is present either in the free form or in the enzyme-substrate complex.

Different rearrangements of the Michaelis-Menten equation, such as the Lineweaver-Burke, Eadie-Hofsteot, and Hanes-Woolf plots, are alternate ways to graph kinetic parameters. The Lineweaver-Burke or double reciprocal plot is often used to estimate the KM and the Vmax. The plot uses the reciprocals values of the x and y-axis from the Michaelis-Menten plot. Mathematically, the y-intercept equals 1/Vmax, and the x-intercept equals −1/KM.

The Lineweaver-Burke plot can be used to visually differentiate between inhibitor types – competitive, non-competitive, and uncompetitive. Different rearrangements of the Michaelis-Menten equation, such as the Eadie-Hofstee and Hanes-Woolf plots, are also used to determine kinetic parameters.

Tags
Enzyme KineticsReaction RateSubstrate ConcentrationMichaelis Menten EquationVmaxKMLineweaver Burke PlotEadie Hofstee PlotHanes Woolf PlotEnzyme substrate ComplexInhibitor TypesCompetitive InhibitionNon competitive InhibitionUncompetitive Inhibition

Dal capitolo 3:

article

Now Playing

3.13 : Introduction to Enzyme Kinetics

Energy and Catalysis

19.2K Visualizzazioni

article

3.1 : Il Primo F.L. della Termodinamica

Energy and Catalysis

5.2K Visualizzazioni

article

3.2 : Il secondo principio della termodinamica

Energy and Catalysis

4.8K Visualizzazioni

article

3.3 : Entalpia all'interno della cellula

Energy and Catalysis

5.6K Visualizzazioni

article

3.4 : Entropia all'interno della cellula

Energy and Catalysis

10.1K Visualizzazioni

article

3.5 : Un'introduzione all'energia libera

Energy and Catalysis

7.9K Visualizzazioni

article

3.6 : Reazioni endergoniche ed esoergoniche in cellula

Energy and Catalysis

13.9K Visualizzazioni

article

3.7 : La costante di legame all'equilibrio e la forza di legame

Energy and Catalysis

8.9K Visualizzazioni

article

3.8 : Energia libera ed equilibrio

Energy and Catalysis

5.9K Visualizzazioni

article

3.9 : Non equilibrio nella cellula

Energy and Catalysis

4.0K Visualizzazioni

article

3.10 : Ossidazione e riduzione di molecole organiche

Energy and Catalysis

5.7K Visualizzazioni

article

3.11 : Introduzione agli enzimi

Energy and Catalysis

16.4K Visualizzazioni

article

3.12 : Enzimi ed energia di attivazione

Energy and Catalysis

11.2K Visualizzazioni

article

3.14 : Numero di fatturato ed efficienza catalitica

Energy and Catalysis

9.6K Visualizzazioni

article

3.15 : Enzimi cataliticamente perfetti

Energy and Catalysis

3.8K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati