Iniciar sesión

The work done to bring a charge through a distance r is given by the potential difference between the initial and the final position. To assemble a collection of point charges, the total work done can be expressed in terms of the product of each pair of charges divided by their separation distance, defined with respect to a suitable origin. Solving this expression gives the energy stored in a point charge distribution.

Equation1

Consider an infinitesimal charge element in a configuration of continuous charge distribution enclosed in a definite volume. The product of the volume charge density and the volume of the element gives the total charge in this element. The energy stored in this configuration of continuous charge distribution is given by integrating volume charge density and the corresponding potential.

Applying Gauss's law in its differential form, the volume charge density can be written in terms of the electric field. Using the product rule in this expression gives the divergence of the electric field. The volume integral can be written as a surface integral using Gauss's divergence theorem. Rewriting the potential in terms of the electric field gives the energy stored in this configuration.

Equation2

Recall that to obtain the expression for work done, the integration must be performed over the region where the charge is located. Even if the integration is performed over a larger volume, the work done remains conserved as the charge density in the extra volume is zero.

The surface integral of an electric field, which relates to electric potential energy, depends on factors beyond distance, such as charge distribution and system geometry. To calculate total energy, integration over all space, considering the entire volume, is necessary, as the electric field alone at the surface does not provide the complete picture.

Equation3

Tags
EnergyCharge DistributionPotential DifferenceWork DonePoint ChargesVolume Charge DensityElectric FieldGauss s LawDivergence TheoremElectric Potential EnergyIntegrationSurface IntegralTotal Energy

Del capítulo 24:

article

Now Playing

24.13 : Energy Associated With a Charge Distribution

Electric Potential

1.4K Vistas

article

24.1 : Energía Potencial Eléctrica

Electric Potential

5.2K Vistas

article

24.2 : Energía potencial eléctrica en un campo eléctrico uniforme

Electric Potential

4.3K Vistas

article

24.3 : Energía potencial eléctrica de dos cargas puntuales

Electric Potential

4.2K Vistas

article

24.4 : Potencial eléctrico y diferencia de potencial

Electric Potential

4.1K Vistas

article

24.5 : Encontrar el potencial eléctrico del campo eléctrico

Electric Potential

3.8K Vistas

article

24.6 : Cálculos de Potencial Eléctrico I

Electric Potential

1.8K Vistas

article

24.7 : Cálculos de Potencial Eléctrico II

Electric Potential

1.5K Vistas

article

24.8 : Superficies equipotenciales y líneas de campo

Electric Potential

3.5K Vistas

article

24.9 : Superficies equipotenciales y conductores

Electric Potential

3.2K Vistas

article

24.10 : Determinación del campo eléctrico a partir del potencial eléctrico

Electric Potential

4.3K Vistas

article

24.11 : Ecuación de Poisson y Laplace

Electric Potential

2.4K Vistas

article

24.12 : Generador Van de Graaff

Electric Potential

1.6K Vistas

article

24.14 : Condiciones de contorno electrostáticas

Electric Potential

355 Vistas

article

24.15 : Segundo teorema de unicidad

Electric Potential

915 Vistas

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados