JoVE Logo

Zaloguj się

24.13 : Energy Associated With a Charge Distribution

The work done to bring a charge through a distance r is given by the potential difference between the initial and the final position. To assemble a collection of point charges, the total work done can be expressed in terms of the product of each pair of charges divided by their separation distance, defined with respect to a suitable origin. Solving this expression gives the energy stored in a point charge distribution.

Hydrogen bonding in water molecules, diagram showing H2O interaction via dashed lines, chemistry.

Consider an infinitesimal charge element in a configuration of continuous charge distribution enclosed in a definite volume. The product of the volume charge density and the volume of the element gives the total charge in this element. The energy stored in this configuration of continuous charge distribution is given by integrating volume charge density and the corresponding potential.   

Applying Gauss's law in its differential form, the volume charge density can be written in terms of the electric field. Using the product rule in this expression gives the divergence of the electric field. The volume integral can be written as a surface integral using Gauss's divergence theorem. Rewriting the potential in terms of the electric field gives the energy stored in this configuration.

DNA replication diagram showing polymerase chain reaction steps; PCR process illustration.

Recall that to obtain the expression for work done, the integration must be performed over the region where the charge is located. Even if the integration is performed over a larger volume, the work done remains conserved as the charge density in the extra volume is zero.

The surface integral of an electric field, which relates to electric potential energy, depends on factors beyond distance, such as charge distribution and system geometry. To calculate total energy, integration over all space, considering the entire volume, is necessary, as the electric field alone at the surface does not provide the complete picture.

Molecular orbitals of dihydrogen ion diagram, illustrating bonding and antibonding interactions.

Tagi

EnergyCharge DistributionPotential DifferenceWork DonePoint ChargesVolume Charge DensityElectric FieldGauss s LawDivergence TheoremElectric Potential EnergyIntegrationSurface IntegralTotal Energy

Z rozdziału 24:

article

Now Playing

24.13 : Energy Associated With a Charge Distribution

Electric Potential

1.5K Wyświetleń

article

24.1 : Elektryczna energia potencjalna

Electric Potential

5.7K Wyświetleń

article

24.2 : Elektryczna energia potencjalna w jednorodnym polu elektrycznym

Electric Potential

4.6K Wyświetleń

article

24.3 : Elektryczna energia potencjalna dwóch ładunków punktowych

Electric Potential

4.4K Wyświetleń

article

24.4 : Potencjał elektryczny i różnica potencjałów

Electric Potential

4.3K Wyświetleń

article

24.5 : Znajdowanie potencjału elektrycznego z pola elektrycznego

Electric Potential

4.0K Wyświetleń

article

24.6 : Obliczenia potencjału elektrycznego I

Electric Potential

1.9K Wyświetleń

article

24.7 : Obliczenia potencjału elektrycznego II

Electric Potential

1.6K Wyświetleń

article

24.8 : Powierzchnie ekwipotencjalne i linie pól

Electric Potential

3.6K Wyświetleń

article

24.9 : Powierzchnie ekwipotencjalne i przewodniki

Electric Potential

3.3K Wyświetleń

article

24.10 : Wyznaczanie pola elektrycznego na podstawie potencjału elektrycznego

Electric Potential

4.3K Wyświetleń

article

24.11 : Równanie Poissona i Laplace'a

Electric Potential

2.6K Wyświetleń

article

24.12 : Generator Van de Graaffa

Electric Potential

1.7K Wyświetleń

article

24.14 : Elektrostatyczne warunki brzegowe

Electric Potential

409 Wyświetleń

article

24.15 : Drugie twierdzenie o wyjątkowości

Electric Potential

970 Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone