JoVE Logo

Войдите в систему

24.13 : Energy Associated With a Charge Distribution

The work done to bring a charge through a distance r is given by the potential difference between the initial and the final position. To assemble a collection of point charges, the total work done can be expressed in terms of the product of each pair of charges divided by their separation distance, defined with respect to a suitable origin. Solving this expression gives the energy stored in a point charge distribution.

Hydrogen bonding in water molecules, diagram showing H2O interaction via dashed lines, chemistry.

Consider an infinitesimal charge element in a configuration of continuous charge distribution enclosed in a definite volume. The product of the volume charge density and the volume of the element gives the total charge in this element. The energy stored in this configuration of continuous charge distribution is given by integrating volume charge density and the corresponding potential.   

Applying Gauss's law in its differential form, the volume charge density can be written in terms of the electric field. Using the product rule in this expression gives the divergence of the electric field. The volume integral can be written as a surface integral using Gauss's divergence theorem. Rewriting the potential in terms of the electric field gives the energy stored in this configuration.

DNA replication diagram showing polymerase chain reaction steps; PCR process illustration.

Recall that to obtain the expression for work done, the integration must be performed over the region where the charge is located. Even if the integration is performed over a larger volume, the work done remains conserved as the charge density in the extra volume is zero.

The surface integral of an electric field, which relates to electric potential energy, depends on factors beyond distance, such as charge distribution and system geometry. To calculate total energy, integration over all space, considering the entire volume, is necessary, as the electric field alone at the surface does not provide the complete picture.

Molecular orbitals of dihydrogen ion diagram, illustrating bonding and antibonding interactions.

Теги

EnergyCharge DistributionPotential DifferenceWork DonePoint ChargesVolume Charge DensityElectric FieldGauss s LawDivergence TheoremElectric Potential EnergyIntegrationSurface IntegralTotal Energy

Из главы 24:

article

Now Playing

24.13 : Energy Associated With a Charge Distribution

Electric Potential

1.5K Просмотры

article

24.1 : Электрическая потенциальная энергия

Electric Potential

5.7K Просмотры

article

24.2 : Электрическая потенциальная энергия в однородном электрическом поле

Electric Potential

4.6K Просмотры

article

24.3 : Электрическая потенциальная энергия двухточечных зарядов

Electric Potential

4.4K Просмотры

article

24.4 : Электрический потенциал и разность потенциалов

Electric Potential

4.3K Просмотры

article

24.5 : Определение электрического потенциала по электрическому полю

Electric Potential

4.0K Просмотры

article

24.6 : Расчеты электрического потенциала I

Electric Potential

1.9K Просмотры

article

24.7 : Расчеты электрического потенциала II

Electric Potential

1.6K Просмотры

article

24.8 : Эквипотенциальные поверхности и силовые линии поля

Electric Potential

3.6K Просмотры

article

24.9 : Эквипотенциальные поверхности и проводники

Electric Potential

3.3K Просмотры

article

24.10 : Определение электрического поля по электрическому потенциалу

Electric Potential

4.3K Просмотры

article

24.11 : Уравнение Пуассона и Лапласа

Electric Potential

2.6K Просмотры

article

24.12 : Генератор Ван де Граафа

Electric Potential

1.7K Просмотры

article

24.14 : Электростатические граничные условия

Electric Potential

409 Просмотры

article

24.15 : Вторая теорема об уникальности

Electric Potential

970 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены