JoVE Logo

S'identifier

24.13 : Energy Associated With a Charge Distribution

The work done to bring a charge through a distance r is given by the potential difference between the initial and the final position. To assemble a collection of point charges, the total work done can be expressed in terms of the product of each pair of charges divided by their separation distance, defined with respect to a suitable origin. Solving this expression gives the energy stored in a point charge distribution.

Hydrogen bonding in water molecules, diagram showing H2O interaction via dashed lines, chemistry.

Consider an infinitesimal charge element in a configuration of continuous charge distribution enclosed in a definite volume. The product of the volume charge density and the volume of the element gives the total charge in this element. The energy stored in this configuration of continuous charge distribution is given by integrating volume charge density and the corresponding potential.   

Applying Gauss's law in its differential form, the volume charge density can be written in terms of the electric field. Using the product rule in this expression gives the divergence of the electric field. The volume integral can be written as a surface integral using Gauss's divergence theorem. Rewriting the potential in terms of the electric field gives the energy stored in this configuration.

DNA replication diagram showing polymerase chain reaction steps; PCR process illustration.

Recall that to obtain the expression for work done, the integration must be performed over the region where the charge is located. Even if the integration is performed over a larger volume, the work done remains conserved as the charge density in the extra volume is zero.

The surface integral of an electric field, which relates to electric potential energy, depends on factors beyond distance, such as charge distribution and system geometry. To calculate total energy, integration over all space, considering the entire volume, is necessary, as the electric field alone at the surface does not provide the complete picture.

Molecular orbitals of dihydrogen ion diagram, illustrating bonding and antibonding interactions.

Tags

EnergyCharge DistributionPotential DifferenceWork DonePoint ChargesVolume Charge DensityElectric FieldGauss s LawDivergence TheoremElectric Potential EnergyIntegrationSurface IntegralTotal Energy

Du chapitre 24:

article

Now Playing

24.13 : Energy Associated With a Charge Distribution

Electric Potential

1.5K Vues

article

24.1 : Potentiel électrique Énergie

Electric Potential

5.7K Vues

article

24.2 : Énergie potentielle électrique dans un champ électrique uniforme

Electric Potential

4.6K Vues

article

24.3 : Énergie potentielle électrique des charges en deux points

Electric Potential

4.4K Vues

article

24.4 : Potentiel électrique et différence de potentiel

Electric Potential

4.3K Vues

article

24.5 : Détermination du potentiel électrique à partir du champ électrique

Electric Potential

4.0K Vues

article

24.6 : Calculs du potentiel électrique I

Electric Potential

1.9K Vues

article

24.7 : Calculs du potentiel électrique II

Electric Potential

1.6K Vues

article

24.8 : Surfaces équipotentielles et lignes de champ

Electric Potential

3.6K Vues

article

24.9 : Surfaces équipotentielles et conducteurs

Electric Potential

3.3K Vues

article

24.10 : Détermination du champ électrique à partir du potentiel électrique

Electric Potential

4.3K Vues

article

24.11 : Équation de Poisson et de Laplace

Electric Potential

2.6K Vues

article

24.12 : Groupe électrogène Van de Graaff

Electric Potential

1.7K Vues

article

24.14 : Conditions limites électrostatiques

Electric Potential

409 Vues

article

24.15 : Deuxième théorème d’unicité

Electric Potential

970 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.