Iniciar sesión

Scalar notation is a useful method for simplifying calculations involving vectors. When vectors are added or subtracted, their components can be added or subtracted separately using scalar notation. For instance, force, a vector quantity, can be broken down into its x and y components, called rectangular components, and then the magnitude and direction of these components can be determined using trigonometric functions.

Consider a man pulling a rope from a hook in the northeast direction. The magnitude of this applied force vector is denoted as F1. It is resolved into scalar components, represented as F1x along the x-axis and F1y along the y-axis. The expressions for the rectangular components F1x and F1y are obtained using trigonometric functions, as they form a right-angle triangle. Using these components and the Pythagorean theorem, the magnitude of the force F1 can be calculated. The tan inverse of the y component over the x component gives the direction of the force. If another force F2 acts on the same hook from the southeast direction, using a similar method, one can find the magnitude and direction of this force as well.

The resultant force is the algebraic sum of the components of both the forces along the x and y axes. Its magnitude can also be obtained by using the square root of the sum of the squares of its components. This resultant force can either represent the net force on an object or the force required to counteract the other forces.

Scalar notation is useful for calculating forces in different directions and understanding the forces acting on an object. By breaking forces into their rectangular components and then using trigonometric functions, one can determine the magnitude of force and the direction quickly and accurately.

Tags
Scalar NotationVector CalculationsForce VectorRectangular ComponentsTrigonometric FunctionsMagnitudeDirectionPythagorean TheoremResultant ForceNet ForceX axisY axisAlgebraic Sum

Del capítulo 2:

article

Now Playing

2.8 : Scalar Notation

Force Vectors

602 Vistas

article

2.1 : Escalares y vectores

Force Vectors

1.1K Vistas

article

2.2 : Operaciones vectoriales

Force Vectors

1.1K Vistas

article

2.3 : Introducción a la fuerza

Force Vectors

422 Vistas

article

2.4 : Clasificación de la fuerza

Force Vectors

1.0K Vistas

article

2.5 : Suma vectorial de fuerzas

Force Vectors

538 Vistas

article

2.6 : Sistema de fuerza bidimensional

Force Vectors

803 Vistas

article

2.7 : Sistema de Fuerza Bidimensional: Resolución de Problemas

Force Vectors

494 Vistas

article

2.9 : Notación vectorial cartesiana

Force Vectors

659 Vistas

article

2.10 : Cosenos de dirección de un vector

Force Vectors

373 Vistas

article

2.11 : Sistema de fuerza tridimensional

Force Vectors

1.9K Vistas

article

2.12 : Sistema de fuerza tridimensional: resolución de problemas

Force Vectors

566 Vistas

article

2.13 : Vectores de posición

Force Vectors

669 Vistas

article

2.14 : Vector de fuerza a lo largo de una línea

Force Vectors

423 Vistas

article

2.15 : Producto Dot

Force Vectors

248 Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados