Zaloguj się

Scalar notation is a useful method for simplifying calculations involving vectors. When vectors are added or subtracted, their components can be added or subtracted separately using scalar notation. For instance, force, a vector quantity, can be broken down into its x and y components, called rectangular components, and then the magnitude and direction of these components can be determined using trigonometric functions.

Consider a man pulling a rope from a hook in the northeast direction. The magnitude of this applied force vector is denoted as F1. It is resolved into scalar components, represented as F1x along the x-axis and F1y along the y-axis. The expressions for the rectangular components F1x and F1y are obtained using trigonometric functions, as they form a right-angle triangle. Using these components and the Pythagorean theorem, the magnitude of the force F1 can be calculated. The tan inverse of the y component over the x component gives the direction of the force. If another force F2 acts on the same hook from the southeast direction, using a similar method, one can find the magnitude and direction of this force as well.

The resultant force is the algebraic sum of the components of both the forces along the x and y axes. Its magnitude can also be obtained by using the square root of the sum of the squares of its components. This resultant force can either represent the net force on an object or the force required to counteract the other forces.

Scalar notation is useful for calculating forces in different directions and understanding the forces acting on an object. By breaking forces into their rectangular components and then using trigonometric functions, one can determine the magnitude of force and the direction quickly and accurately.

Tagi
Scalar NotationVector CalculationsForce VectorRectangular ComponentsTrigonometric FunctionsMagnitudeDirectionPythagorean TheoremResultant ForceNet ForceX axisY axisAlgebraic Sum

Z rozdziału 2:

article

Now Playing

2.8 : Scalar Notation

Force Vectors

602 Wyświetleń

article

2.1 : Skalar i wektory

Force Vectors

1.1K Wyświetleń

article

2.2 : Operacje wektorowe

Force Vectors

1.1K Wyświetleń

article

2.3 : Wprowadzenie do siły

Force Vectors

422 Wyświetleń

article

2.4 : Klasyfikacja siły

Force Vectors

1.0K Wyświetleń

article

2.5 : Dodawanie wektorów sił

Force Vectors

538 Wyświetleń

article

2.6 : Dwuwymiarowy układ sił

Force Vectors

803 Wyświetleń

article

2.7 : Dwuwymiarowy układ sił: rozwiązywanie problemów

Force Vectors

494 Wyświetleń

article

2.9 : Kartezjańska notacja wektorowa

Force Vectors

659 Wyświetleń

article

2.10 : Kierunek cosinusów wektora

Force Vectors

373 Wyświetleń

article

2.11 : Trójwymiarowy układ sił

Force Vectors

1.9K Wyświetleń

article

2.12 : Trójwymiarowy układ sił: rozwiązywanie problemów

Force Vectors

566 Wyświetleń

article

2.13 : Wektory położenia

Force Vectors

669 Wyświetleń

article

2.14 : Wektor siły wzdłuż linii

Force Vectors

423 Wyświetleń

article

2.15 : Iloczyn skalarny

Force Vectors

248 Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone