JoVE Logo

Accedi

2.8 : Scalar Notation

Scalar notation is a useful method for simplifying calculations involving vectors. When vectors are added or subtracted, their components can be added or subtracted separately using scalar notation. For instance, force, a vector quantity, can be broken down into its x and y components, called rectangular components, and then the magnitude and direction of these components can be determined using trigonometric functions.

Consider a man pulling a rope from a hook in the northeast direction. The magnitude of this applied force vector is denoted as F1. It is resolved into scalar components, represented as F1x along the x-axis and F1y along the y-axis. The expressions for the rectangular components F1x and F1y are obtained using trigonometric functions, as they form a right-angle triangle. Using these components and the Pythagorean theorem, the magnitude of the force F1 can be calculated. The tan inverse of the y component over the x component gives the direction of the force. If another force F2 acts on the same hook from the southeast direction, using a similar method, one can find the magnitude and direction of this force as well.

The resultant force is the algebraic sum of the components of both the forces along the x and y axes. Its magnitude can also be obtained by using the square root of the sum of the squares of its components. This resultant force can either represent the net force on an object or the force required to counteract the other forces.

Scalar notation is useful for calculating forces in different directions and understanding the forces acting on an object. By breaking forces into their rectangular components and then using trigonometric functions, one can determine the magnitude of force and the direction quickly and accurately.

Tags

Scalar NotationVector CalculationsForce VectorRectangular ComponentsTrigonometric FunctionsMagnitudeDirectionPythagorean TheoremResultant ForceNet ForceX axisY axisAlgebraic Sum

Dal capitolo 2:

article

Now Playing

2.8 : Scalar Notation

Force Vectors

651 Visualizzazioni

article

2.1 : Scalari e vettori

Force Vectors

1.2K Visualizzazioni

article

2.2 : Operazioni vettoriali

Force Vectors

1.1K Visualizzazioni

article

2.3 : Introduzione alla forza

Force Vectors

465 Visualizzazioni

article

2.4 : Classificazione delle forze

Force Vectors

1.1K Visualizzazioni

article

2.5 : Addizione vettoriale di forze

Force Vectors

761 Visualizzazioni

article

2.6 : Sistema di forze bidimensionali

Force Vectors

871 Visualizzazioni

article

2.7 : Sistema di forze bidimensionale: risoluzione dei problemi

Force Vectors

539 Visualizzazioni

article

2.9 : Notazione vettoriale cartesiana

Force Vectors

732 Visualizzazioni

article

2.10 : Coseni di direzione di un vettore

Force Vectors

461 Visualizzazioni

article

2.11 : Sistema di Forze Tridimensionali

Force Vectors

2.0K Visualizzazioni

article

2.12 : Sistema di Forze Tridimensionale:Risoluzione dei Problemi

Force Vectors

622 Visualizzazioni

article

2.13 : Vettori di posizione

Force Vectors

793 Visualizzazioni

article

2.14 : Vettore di forza lungo una linea

Force Vectors

468 Visualizzazioni

article

2.15 : Prodotto Dot

Force Vectors

290 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati