S'identifier

Scalar notation is a useful method for simplifying calculations involving vectors. When vectors are added or subtracted, their components can be added or subtracted separately using scalar notation. For instance, force, a vector quantity, can be broken down into its x and y components, called rectangular components, and then the magnitude and direction of these components can be determined using trigonometric functions.

Consider a man pulling a rope from a hook in the northeast direction. The magnitude of this applied force vector is denoted as F1. It is resolved into scalar components, represented as F1x along the x-axis and F1y along the y-axis. The expressions for the rectangular components F1x and F1y are obtained using trigonometric functions, as they form a right-angle triangle. Using these components and the Pythagorean theorem, the magnitude of the force F1 can be calculated. The tan inverse of the y component over the x component gives the direction of the force. If another force F2 acts on the same hook from the southeast direction, using a similar method, one can find the magnitude and direction of this force as well.

The resultant force is the algebraic sum of the components of both the forces along the x and y axes. Its magnitude can also be obtained by using the square root of the sum of the squares of its components. This resultant force can either represent the net force on an object or the force required to counteract the other forces.

Scalar notation is useful for calculating forces in different directions and understanding the forces acting on an object. By breaking forces into their rectangular components and then using trigonometric functions, one can determine the magnitude of force and the direction quickly and accurately.

Tags
Scalar NotationVector CalculationsForce VectorRectangular ComponentsTrigonometric FunctionsMagnitudeDirectionPythagorean TheoremResultant ForceNet ForceX axisY axisAlgebraic Sum

Du chapitre 2:

article

Now Playing

2.8 : Scalar Notation

Force Vectors

602 Vues

article

2.1 : Scalaire et vecteurs

Force Vectors

1.1K Vues

article

2.2 : Opérations vectorielles

Force Vectors

1.1K Vues

article

2.3 : Introduction à la force

Force Vectors

422 Vues

article

2.4 : Force Classification

Force Vectors

1.0K Vues

article

2.5 : Addition vectorielle des forces

Force Vectors

537 Vues

article

2.6 : Système de force bidimensionnel

Force Vectors

802 Vues

article

2.7 : Système de force bidimensionnel : résolution de problèmes

Force Vectors

493 Vues

article

2.9 : Notation vectorielle cartésienne

Force Vectors

652 Vues

article

2.10 : Cosinus directeurs d’un vecteur

Force Vectors

371 Vues

article

2.11 : Système de force tridimensionnel

Force Vectors

1.8K Vues

article

2.12 : Système de force tridimensionnelle : résolution de problèmes

Force Vectors

564 Vues

article

2.13 : Vecteurs de position

Force Vectors

669 Vues

article

2.14 : Vecteur de force le long d’une droite

Force Vectors

423 Vues

article

2.15 : Produit scalaire

Force Vectors

248 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.