In atomic emission spectroscopy (AES), high-temperature atomizers excite a broad range of elements and molecules that generate complex emissions from sources such as oxides, hydroxides, and flame combustion products in the flame or plasma. Several strategies can be employed to minimize spectral interferences caused by overlapping emission lines or bands. These include increasing instrument resolution, choosing alternative emission lines, optimally placing the detector in low-background regions, or applying background correction techniques.

Chemical interferences occur when the analyte and other species in the flame react, forming stable compounds that do not dissociate, altering the analyte signals. These chemical interferences can often be eliminated or moderated using higher temperatures or releasing agents that selectively react with the interferent to release the analyte. Plasma sources contain abundant electrons, which help to offset ionization interference. Introducing easily ionizable elements into samples and standards also counteracts chemical interferences and improves sensitivity.

Organic solvents enhance the spectral line intensities due to higher flame temperature, faster feed rate, and smaller droplets in the aerosol. However, salts, acids, and other dissolved species may depress emission intensity, necessitating careful sample/standard matching. Fewer species remain stable in plasma, reducing interference from inorganic anions, organic solvents, and other dissolved species.

Further, the ground state analyte atoms in the outer flame regions may absorb the radiation emitted by the excited atoms in the flame center, decreasing emission intensity. However, this is less likely in plasma because of the shorter path length and more uniform temperature.

Del capítulo 14:

article

Now Playing

14.11 : Atomic Emission Spectroscopy: Interference

Atomic Spectroscopy

54 Vistas

article

14.1 : Espectroscopía atómica: absorción, emisión y fluorescencia

Atomic Spectroscopy

256 Vistas

article

14.2 : Espectroscopía atómica: efectos de la temperatura

Atomic Spectroscopy

120 Vistas

article

14.3 : Espectroscopía de Absorción Atómica: Visión General

Atomic Spectroscopy

196 Vistas

article

14.4 : Espectroscopía de Absorción Atómica: Instrumentación

Atomic Spectroscopy

150 Vistas

article

14.5 : Espectroscopía de Absorción Atómica: Radiación y Fuentes de Luz

Atomic Spectroscopy

147 Vistas

article

14.6 : Espectroscopía de Absorción Atómica: Métodos de Atomización

Atomic Spectroscopy

118 Vistas

article

14.7 : Espectroscopía de Absorción Atómica: Interferencia

Atomic Spectroscopy

204 Vistas

article

14.8 : Espectroscopía de Absorción Atómica: Laboratorio

Atomic Spectroscopy

91 Vistas

article

14.9 : Espectroscopía de emisión atómica: Visión general

Atomic Spectroscopy

220 Vistas

article

14.10 : Espectroscopía de Emisión Atómica: Instrumentación

Atomic Spectroscopy

101 Vistas

article

14.12 : Espectroscopía de emisión atómica de plasma acoplado inductivamente: principio

Atomic Spectroscopy

259 Vistas

article

14.13 : Espectroscopía de emisión atómica con plasma acoplado inductivamente: instrumentación

Atomic Spectroscopy

86 Vistas

article

14.14 : Espectroscopía de Emisión Atómica: Laboratorio

Atomic Spectroscopy

66 Vistas

article

14.15 : Espectroscopía de fluorescencia atómica

Atomic Spectroscopy

63 Vistas

See More

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados