JoVE Logo

Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

En este artículo

  • Resumen
  • Resumen
  • Introducción
  • Protocolo
  • Resultados
  • Discusión
  • Divulgaciones
  • Agradecimientos
  • Materiales
  • Referencias
  • Reimpresiones y Permisos

Resumen

A feasible laboratory module for biology undergraduates that explores advanced cellular and molecular concepts using animal cell culture is described. Students grow, characterize and manipulate a breast cancer cell model by exposure to chemotherapy agents. Cell viability is assayed through cell counting using both a standard and novel method.

Resumen

Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.

Introducción

A menudo, en los cursos de biología general de pregrado, los temas de regulación del ciclo celular y el cáncer se tocan pero no exploradas en detalle porque la amplitud de contenidos en estos cursos deja poco tiempo para la profundidad. Además, los estudiantes de pregrado de biología no están normalmente expuestos a las técnicas avanzadas asociadas con cultivo de células animales. Para ayudar a los estudiantes a desarrollar una comprensión más profunda de estos conceptos, mientras que la aplicación y el análisis de lo que han aprendido, una actividad de laboratorio se desarrolló como una modificación del Instituto Walter Reed del Ejército de Investigación (WRAIR) extendió la actividad de laboratorio 1. El módulo de laboratorio utiliza una estrategia experimental paso a paso que incluye el cultivo y la caracterización de un modelo de células de cáncer, desarrollo y ejecución de los métodos de recuento de células, estableciendo curso temporal óptimo y las dosis para el tratamiento de las células con agentes anti-proliferativos, y la identificación de vías de señalización celular aberrantes . El experimento también permite abiertoconsulta -ended.

La mayor parte de las técnicas necesarias para esta actividad puede llevarse a cabo en un laboratorio típico biología-enseñanza. La actividad se inicia con los estudiantes que caracterizan la tasa de la morfología y el crecimiento del tumor mamario de ratón (MMT) línea celular, un modelo de cáncer de mama humano 2. El cáncer de mama fue elegido como el cáncer de modelo debido a su prevalencia en la población, su familiaridad con los estudiantes en edad universitaria, y los datos difundidos disponibles. La línea de células MMT fue seleccionado específicamente porque es fácil de obtener, bien caracterizado, tiene un tiempo de duplicación de corto y es fácil de cultivar. Además, las células MMT son dependiente de estrógenos que es consistente con la mayoría de los cánceres de mama femenino. Luego, los estudiantes identifican vías de señalización celular aberrante en las células MMT tratando las células con medicamentos de quimioterapia cuyo mecanismo de acción es así established.The concentración de los fármacos y la duración de los tratamientos son variados permitiendo a los estudiantespara evaluar el efecto de estas variables en la tasa de división celular. El ensayo clave para esta actividad es la determinación de la viabilidad celular, que requiere simplemente el recuento de células, utilizando uno de dos métodos. Cada método depende de fuertes habilidades de microscopía. Los estudiantes determinan la viabilidad celular mediante el uso de un estándar, el método hemocitómetro y un método fotomicroscopía novedosa y proponen. Con base en sus hallazgos, pueden proponer y probar modificaciones a la actividad. Luego, los estudiantes representan a sus datos e interpretar los resultados para refinar su hipótesis y diseñar nuevas estrategias experimentales.

Esta actividad de laboratorio es adecuado para estudiantes de primer año o segundo nivel de estudiantes que se especializan en las ciencias biológicas. Se condensa en un módulo de laboratorio de una semana de duración que se puede completar en un primer año, biología general o segundo año, celular / molecular curso de biología. Habilidades necesarias para la correcta ejecución de la actividad incluyen la aritmética básica y el álgebra, la familiaridad con una variedad de ctécnicas de laboratorio de mineral (por ejemplo, pipeteo, la toma de solución, técnica estéril), análisis de datos, la gestión básica microscopía de luz y el tiempo, junto con el conocimiento del instructor de cultivo celular y el software de hoja de cálculo. Los reactivos necesarios incluyen un modelo de línea celular animal para el cáncer (por ejemplo, células mamarias de ratón tumorales, MMT 2), agentes de quimioterapia (por ejemplo, el tamoxifeno, la curcumina, la metformina, y la aspirina), tripano medios de cultivo azul y celular (por ejemplo, medio esencial mínimo de Eagle ; EMEM) con los suplementos apropiados (por ejemplo, caballo donante y suero fetal bovino). Instrumentos necesarios incluyen un microscopio invertido de luz con apego cámara digital, ordenador, 100 mm y 24 placas de cultivo de tejidos así, incubadora de CO 2 (o equivalente), gabinete de bioseguridad (BSC; Clase II), hemocitómetro, y el software de la microscopía digital.

Hay buenos ejemplos de actividades de laboratorio específicas que se basan en cultivo de células animales a TEACestudiantes de pregrado h sobre conceptos de la biología celular 3. Sin embargo muchos de ellos requieren suministros o técnicas que no son de fácil acceso (por ejemplo, isótopos radiactivos, tejido animal vivo, equipos de imagen avanzada 1,4,5), describen los protocolos que están bastante avanzados (por ejemplo, adecuado para un curso de nivel 400 6), o requerir varias semanas o semestre proyectos largos 6,7. La actividad de laboratorio descrito aquí es sencillo y puede llevarse a cabo en una sola semana con equipo de laboratorio común.

En resumen, este módulo de laboratorio introduce o refuerza los conceptos de ciclo celular, vías de señalización celular y el cáncer, mientras que la enseñanza de habilidades de laboratorio básicos y avanzados, análisis de datos experimentales, el método de cultivo de células animales y el proceso científico eficaz. El módulo de laboratorio es simple y económicamente accesible y proporciona la flexibilidad y la oportunidad para la investigación abierta. La actividad fomenta la creatividad del estudianteproporcionando una estrategia experimental plantilla que actúa como una guía, pero no una receta. Lo más importante, los satisface actividad todos los dominios de aprendizaje de Blooms Taxonomía 8, ya que requiere recordar, comprender, aplicar, analizar, evaluar y crear mediante la participación de los estudiantes en un proceso que los saca del libro de texto y en el mundo de la investigación científica.

Access restricted. Please log in or start a trial to view this content.

Protocolo

Notes: Conduct all work with cells and cell culture reagents in a Class II biosafety cabinet (BSC)9. MMT cells are classified as Biosafety Level I, as they pose low to moderate biological risk. Apply proper cleaning and decontamination procedures to the BSC between uses (e.g., ultraviolet light, 70% ethanol wipe down).

1. Grow MMT cells

  1. Grow cells in 10 cm tissue culture dishes containing 10 ml of nutrient rich media that consists of Eagles Minimum Essential Medium (EMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM glutamine, and 1% Antimycotic/Antibiotic (10 units penicillin, 100 µg streptomycin, 0.25 µg amphotericin B). Cultivate cells in a humidified 5% CO2 chamber, at 37 °C. Plate cells at a density of 3.6 x 106 cells/cm2 (see Counting Cells in step 2).
  2. Replace half of the cell culture media with fresh media every 48 hrs unless otherwise indicated. Check cell viability and morphology by examination with an inverted phase contrast light microscope.
    1. Note and characterize cells for size, structure, shape, organization and estimated number under at 100 - 200X magnification. At this density, the cells should appear in one plane, not clumped atop each other and in close proximity. Each cell consists of a thick, spherical core with thin, long, branch-like extensions expanding from it that come to a point (see Figure 1).
  3. Subdivide cells when they reach a cell density of 7.2 x 106 cells/cm2. Cells exhibit a doubling rate of 1.8 x 106 cells/cm2 per 24 hrs. Designate cells Passage X (Px) to denote the number of times they have been split.
    1. At generation 3 (i.e., after three passages, P3), harvest, count, and plate the cells onto a 24 well tissue culture plate at a density of 3.6 x 106 cells/cm2.
  4. View cells every day and record digital photomicrographs. Note and describe cell morphology (i.e., size, shape, light reflective properties). Determine cell doubling time by counting cells regularly and relating elapsed time to cell number.

2. Count MMT Cells

Note: Count cells to determine if cells need to be subcultured, to set up for an experiment or to determine cell viability. There are two methods presented here.

  1. Use of a hemocytometer, a standard technique to count cells.
    1. Obtain a bright-line hemocytometer, a 0.2% solution of trypan blue dye, a compound light microscope, sterile test tubes, pipettes and a manual cell counter.
    2. Under the BSC, use a 10 ml pipette to remove cells from a 10 cm tissue culture dish. If cells are grown on a 24 well plate use a 1 ml pipette or 1,000 µl micropipette to remove the media.
    3. Draw cell media into the pipette, place the tip of the pipette against the bottom of the dish and expel the media while sliding the pipette tip across the plate. Repeat 4 - 5 times to help dislodge cells, dissociate clumps and lead to a more accurate cell count.
    4. Place the resulting cell suspension in a 15 ml sterile tube (or 1 ml micro centrifuge or other small volume tube). Otherwise, leave the cells in the original tissue culture plate/well.
    5. Under the BSC, combine 10 µl of the cell suspension with 10 µl of the trypan blue solution (1:1 ratio) in a non-sterile micro centrifuge or other small volume tube.
      Note: Trypan blue is a vital stain that is not absorbed by healthy viable cells. When cells are damaged or dead, trypan blue can enter the cell allowing dead cells to be counted (aka dye exclusion method). Therefore under a microscope, dead cells appear dark purple while viable cells are a bright and light in color.
    6. Incubate at RT for 5 min.
    7. Place the cover slip on the hemocytometer. Apply 10 µl of the trypan blue-cell suspension mixture into the groove. View the hemocytometer at 100 - 200X magnification. A four-corner grid is apparent (see Figure 2).
    8. Count the number of viable cells (unstained) versus total cells in each gridded area. Average the four grids and multiply by 1 x 104 to obtain cells/ml.
      1. Extrapolate the total number of cells per dish (or cells/cm2). Use this number to either determine the correct volume of the cell suspension to use to seed a new tissue culture plate at the desired density of 3.6 x 106 cells/cmor determine total number of viable cells on the plate or in the well.
        Note: For additional guidance on the use of a hemocytometer, see10.
  2. Use software and a digital camera to count viable cells.
    1. Obtain a digital camera, its accompanying software, a 0.4% solution of trypan blue dye, a compound light microscope, sterile test tubes, pipettes and a computer.
      Note: A Moticam 2,000 digital camera with accompanying Motic Software is employed here. Any comparable camera and software should be sufficient. Ensure that the digital camera software has been calibrated in advance (according to manufacturer’s protocol).
    2. Under the BSC, use a 1 ml pipet or 1,000 µl micropipette to remove the media from the MMT cells growing in a 24 well tissue culture dish. Wash the adherent cells by gently applying a small amount (approximately 500 µl) of un-supplemented (i.e., EMEM without any supplements) fresh media to the plate then removing it. Apply 10 µl of 0.2% trypan blue (made by diluting 1:1 with un-supplemented EMEM) directly to the well.
    3. Incubate the plate at RT for 5 min.
    4. View the plate under the microscope at 100 - 200X magnification with a digital camera attached. Plate may be washed with unsupplemented media if staining with 2% trypan blue is too dark.
    5. Open the software on the computer and verify that the software is calibrated to the objective used via the settings tab. An image of the FOV should appear.
    6. Select the Grid from the Measure tab. A grid of squares approximately 0.005 cm in width will appear. Select Grid Info to confirm the area of each square.
    7. Choose a specific area of the grid to count cells (i.e., 5 squares x 9 squares). Select Rectangle from the Measure tab. Click the corner of a square and drag your cursor to encompass the squares of choice.
      Note: A shade of green will cover the squares of choice and a white box will appear in the corner that provides the width, height, area, and perimeter of the section of the grid chosen (see Figure 3).
    8. Count the number of viable cells within the determined area. Do the same for two other locations in the same well or plate by moving the plate under the microscope.
    9. Be sure that the measured area is the same and the magnification has not changed. Calculate the average number of viable cells within the area. Using the area of the well (for a 24 well plate, one well has an area of 2 cm2, for a 100 mM dish the area is 78.6 cm2), extrapolate the number of viable cells from the area delineated in the grid to the total number of cells within the well (cells/cm2).

3. Treat MMT Cells with anti-proliferative Agents

  1. Prepare solutions of the selected anti-proliferative therapeutic agents (tamoxifen, curcumin and metformin) and optional drug, aspirin under the BSC.
    1. Dissolve curcumin and tamoxifen in 100% ethanol to generate a stock concentration of 27 mM. Dissolve metformin and aspirin in unsupplemented EMEM to generate a stock concentration of 500 mM and 15 mM, respectively.
  2. Establish a Dose Response.
    1. Treat MMT cells with the three anti-proliferative therapeutic agents (tamoxifen, curcumin and metformin) and optional drug (aspirin) at varying concentrations for 96 hrs to generate a dose response curve. Initially administer all drugs at a range of concentrations based on published reports1,11-16 and then at concentrations larger or smaller than those published.
      Note: A dose response determines the minimum concentration of a drug necessary to produce the desired results. Here the desired result is a reduction in cell proliferation as compared to the control.
      1. For tamoxifen and curcumin, use concentrations (and corresponding volumes) of 0.054 mM (1 µl), 0.108 mM (2 µl), 0.162 mM (3 µl) and 0.216 mM (4 µl).
      2. For metformin, use concentrations (and corresponding volumes) of 2 mM (2 µl), 4 mM (4 µl), 6 mM (6 µl), 8 mM (8 µl) and 10 mM (10 µl).
      3. For aspirin, use concentrations (and corresponding volumes) of 0.030 mM (1 µl), 0.060 mM (2 µl), 0.099 mM (3.3 µl), 0.150 mM (5 µl), and 0.216 mM (6.7 µl).
    2. Split MMT cells from the 10 cm dish onto a 24 well plate at a concentration of 3.6 x 106 cells/cm2. Determine initial cell concentration by both cell-counting methods (Step 2). Call this new 24 well plate of cells “Day Split”.
    3. 24 hrs after cell plating, treat the MMT cells with each of the anti-proliferative therapeutic agents, tamoxifen, curcumin, metformin and aspirin, at the concentrations described in Step 3.2.1. Refer to this as “Day 0”.
      1. As each well can hold a maximum of 500 µl of media, use micropipettes with sterile micropipette tips and a new tip each time a new well is treated to avoid cross contamination. Use two wells as controls: cells grown in the absence of any drug treatment (negative control) and cells grown in the presence 100% ethanol (solvent control).
    4. Grow cells and re-administer drugs at the described concentrations when the cells are fed every other day (see Step 1.2) for 96 hrs (until Day 4). On Days 1 - 4 of treatment, observe the cells under the microscope and count using the method in Step 2.2 (see Figure 4).
    5. Repeat the experiment at least three times.
    6. Determine optimal concentration of each drug by graphing the relationship between cell viability and drug dosage over the length of the experiment (see Figure 5).
  3. Establish a Time Course.
    1. Treat MMT cells with the three anti-proliferative therapeutic agents (tamoxifen, curcumin and metformin) at a fixed concentration for varying time periods. Use the optimal concentration identified through the Dose Response experiments (see Step 3.2).
      1. Use the following concentrations: 0.216 mM tamoxifen, 0.216 mM curcumin and 10 mM metformin.
        Note: A time course determines the amount of time necessary for a drug to produce its optimal desired result. Here, the desired result is a reduction in cell proliferation as compared to the control.
    2. Split MMT cells from the 10 cm dish onto a 24 well plate at a concentration of 3.6 x 106 cells/cm2. Determine initial cell concentration by both cell-counting methods (Step 2). Call this new 24 well plate of cells “Day Split”.
    3. 24 hrs after cell plating, treat the MMT cells with each of the anti-proliferative therapeutic agents, tamoxifen, curcumin, metformin and aspirin, at the optimal concentrations identified in Step 3.2. Refer to this as “Day 0”.
      1. As each well can hold a maximum of 500 µl of media, use micropipettes with sterile micropipette tips and a new tip each time a new well is treated to avoid cross contamination.
      2. Use two wells as controls: cells grown in the absence of any drug treatment (negative control) and cells grown in the presence 100% ethanol (solvent control).
  4. Grow cells and re-administer drugs at the selected concentration when the cells are fed every other day (see Step 1.2) for 96 hrs (until Day 4). On Days 1 - 4 of treatment, observe the cells under the microscope and count using the method in Step 2.2 (see Figure 4).
  5. Repeat the experiment at least three times.
  6. Determine optimal exposure time of MMT cells to each drug by graphing the relationship between cell viability and length (time) of drug treatment at the selected concentration (see Figure 6).

4. The Lab Module

Note: The following is a 5-day lab schedule for the lab module. Figure 7 is a flow chart of what the schedule would entail within the 5 days. For this activity to be completed in five days either a time course or a dose response curve is generated. There is not sufficient time to generate both curves. A dose response experiment is described below. A time course experiment can be easily interchanged

  1. Split the class into groups: have one group establish a dose response and the other a time course choosing a concentration in the middle of the proposed dose response concentrations.
    1. Maintain sufficient cultures and drug stocks at appropriate concentrations. Unless otherwise noted, perform all work under the BSC.
  2. Day 1
    1. Direct students to make media and grow cells (as in step 1).
    2. As students obtain a stock of MMT cells on a 10 cm plate, direct the students to prepare cell culture media and give a tutorial in the use of the hemocytometer, digital microscopy and the digital camera microscopy software (as in step 2).
    3. Calibrate the software to the objectives used on the microscope (e.g., 4X, 10X, 20X) now using manufacturer’s protocol.
  3. Day 2
    1. Have students confirm total cell number and cell viability (as in step 2).
    2. Have students count cells on the 100 mm dish using both the microscopy software and the hemocytometer methods, to confirm similar results are obtained.
    3. Direct students to obtain a 24 well plate and split cells from the 100 mm dish to the 24 well plates to the desired starting cell plating density (as in step 1). This is considered Day Split. Place the 24 well plate in a cell culture incubator for 24 hrs.
  4. Day 3
    1. Grow MMT cells for 24 hrs on a 24 well plate. Have students observe cells under microscope and count using microscopy software (as in step 2).
    2. Give the student/team samples of cancer treatment drug stocks. Have them prepare and dilute the original stock solution (as in step 3). Add the various concentrations of the drugs to their cells to establish a dose response curve. This is called Day 0.
    3. Incubate cells (step 1.2) with the drugs for maximum of 48 hrs.
  5. Day 4
    1. Have students observe treated cells after 24 hrs. This is Day 1.
    2. Count each well using microscopy software. Record photographs of each well so that counting can be conducted outside the lab (as in step 2).
    3. Incubate cells (step 1.2) with the drugs for another 24 hrs.
      Note: Instructor provides additional tutorials and reviews of data analysis and graphical presentation. Students learn to create figures, plots, and statistical analysis for the following day of data collection.
  6. Day 5
    1. Have students treated cells after 48 hrs, Day 2.
    2. Count each well using microscopy software. Record photographs of each well so that counting can be conducted outside the lab (as in step 2).
    3. Harvest and collect cells for counting by the traditional hemocytometer method as a means of verifying student ability to effectively use the microscopy software method (as in step 2).
      Note: Collect data and draw conclusions or revise hypotheses, accordingly.

Access restricted. Please log in or start a trial to view this content.

Resultados

Growing MMT cells and comparing counting methods.

Mouse mammary tumor cells were successfully grown and characterized (Figure 1) and a novel cell counting method developed using Motic Software, a digital camera-associated software program for a microscope. This new cell counting method was compared to a traditional counting method employing a hemocytometer (Figure 2) and was shown to be equally accurate in determining cell number (Table 1

Access restricted. Please log in or start a trial to view this content.

Discusión

A lab module is presented that aims to teach a variety of topics in cell biology through the advanced techniques of animal cell culture. The module achieves this by analyzing the effects of a number of anti-proliferative chemicals on the replication of cells that model human breast cancer. The primary assay relies on the fundamental technique of cell counting and introduces a novel way to count cells using microscopy software. The activities comprising the module can be conducted with instruments and equipment available ...

Access restricted. Please log in or start a trial to view this content.

Divulgaciones

The authors received no financial or comparable support from Motic.

Agradecimientos

This work is supported by the Joseph Alexander Foundation, the ASBMB Undergraduate Research Award, 2013-2014, and a Science Award Grant, Marymount Manhattan College, 2012-2013.

Access restricted. Please log in or start a trial to view this content.

Materiales

NameCompanyCatalog NumberComments
Tissue Culture HoodESCO Labculture ReliantClass II Type A2 Biological Safety Cabinet
Waterjactor CO2 IncubatorCEDCOModel 1510
Bright-line HemocytometerAmerican Opticalwith two separate grids
Motic Images PlusMac OSX Verison 2.0 or higher
Gilson PipetmanRainin instrument co. incP-20D, P-200D, P-1000D
CK30/CK40 Culture MicroscopeOlympus4 objective inverted light microscope with camera
200 μl Pipet tipsMidSci40200C
1,000 μl Pipet tipsMidSciAVR4
10 ml Seriological PipetsTPPTP94010
24 well platesCoStar- Tissue Culture Cluster352424 wells, 16 mm well diameter, radiation sterilized
Trypan Blue Solution 0.4%SigmaT8154100 ml, cell culture tested non-haz
Bright-line Hemacytometer replacement coverslip, non-hazSigmaZ375357
Mouse Mammary Tumor(MMT) cellsATCCCCL-51
Eagle Minimum Essentail Medium (EMEM)ATCC30-2003500 ml
Fetal Bovine SerumSigmaF0926500 ml
Metformin HydrochlorideSigmaPHR1084500 mg
TamoxifenSigmaT5648white or white-yellow powder
CurmuminSigmaC1386yellow-orange powder
AspirinSigmaA2093meets USP testing specifications

Referencias

  1. Hammamieh, R., et al. Students investigating the antiproliferative effects of synthesized drugs on mouse mammary tumor cells. Cell Biol Educ. 4 (3), 221-234 (2005).
  2. Sykes, J. A., Whitescarver, J., Briggs, L. Observations on a cell line producing mammary tumor virus. J Natl Cancer Inst. 41 (6), 1315-1327 (1968).
  3. Palombi, P. S. J., Snell, K. Learning about Cells as Dynamic Entities: An Inquiry-Driven Cell Culture Project. Bioscene: Journal of College Biology Teaching. 33, 27-33 (2008).
  4. Ledbetter, M. L. S., Lippert, M. J. Glucose Transport in Cultured Animal Cells: An Exercise for the Undergraduate Cell Biology Laboratory. Cell Biology Education. 1 (3), 76-86 (2002).
  5. Weaver, D. Cardiac Cells Beating in Culture: A Laboratory Exercise. American Biology Teacher. 69, 407-410 (2007).
  6. Marion, R. E., Gardner, G. E., Parks, L. D. Multiweek cell culture project for use in upper-level biology laboratories. Advances in Physiology Education. 36, 154-157 (2012).
  7. Mozdziak, P. E. P., James, N., Carson, S. usanD. An Introductory Undergraduate Course Covering Animal Cell Culture Techniques. Biochemistry and Molecular Biology Education. 32 (5), 319-322 (2004).
  8. Anderson, L. W., et al. A taxonomy for learning, teaching and assessing: A revision of Bloom's Taxonomy of educational objectives (Complete Edition). , Longman, London, England. (2001).
  9. Centers for Disease Contol and Prevention. Appendix A - Primary Containment for Biohazards: Selection, Installation and Use of Biological Safety Cabinets. , (2014).
  10. Davis, J. M. Basic Cell Culture: A Practical Approach. , 2nd edn, Oxford University Press. Oxford, UK. (2002).
  11. Algra, A. M., Rothwell, P. M. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 13 (5), 518-527 (2012).
  12. Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A. B., Aggarwal, B. B. Curcumin and cancer: an 'old-age' disease with an 'age-old' solution. Cancer Lett. 267 (1), 133-164 (2008).
  13. Ararat, E., Sahin, I., Altundag, K. Mechanisms behind the aspirin use and decreased breast cancer incidence. J BUON. 16 (1), 180(2011).
  14. Ararat, E., Sahin, I., Altundag, K. Aspirin intake may prevent metastasis in patients with triple-negative breast cancer. Med Oncol. 28 (4), 1308-1310 (2011).
  15. Blandino, G., et al. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat Commun. 3, 865(2012).
  16. Kunnumakkara, A. B., Anand, P., Aggarwal, B. B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 269 (2), 199-225 (2008).
  17. Burstein, D. E., Blumberg, P. M., Greene, L. A. Nerve growth factor-induced neuronal differentiation of PC12 pheochromocytoma cells: lack of inhibition by a tumor promoter. Brain Res. 247 (1), 115-119 (1982).
  18. Nazarali, S. A., Narod, S. A. Tamoxifen for women at high risk of breast cancer. Breast Cancer (Dove Med Press). 6, 29-36 (2014).
  19. Cui, J., et al. Cross-talk between HER2 and MED1 regulates tamoxifen resistance of human breast cancer cells). Cancer Res. 72 (21), 5625-5634 (2012).
  20. Komm, B. S., Mirkin, S. An overview of current and emerging SERMs. J Steroid Biochem Mol Biol. 143C, 207-222 (2014).
  21. Kaplan, R. M., Satterfield, J. M., Kington, R. S. Building a better physician--the case for the new MCAT. N Engl J Med. 366 (14), 1265-1268 (2012).

Access restricted. Please log in or start a trial to view this content.

Reimpresiones y Permisos

Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos

Solicitar permiso

Explorar más artículos

Mouse Mammary Tumor CellsCell CultureCell DivisionCellular CommunicationCancerChemotherapyCell ProliferationCell CountingCell DeathScientific ProcessLaboratory Skills

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados