Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Method Article
We describe here a protocol for the generation of iCMs using retrovirus-mediated delivery of Gata4, Tbx5 and Mef2c in a polycistronic construct. This protocol yields a relatively homogeneous population of reprogrammed cells with improved efficiency and quality and is valuable for future studies of iCM reprogramming.
La conversión directa de los fibroblastos cardíacos (CFS) en cardiomiocitos inducidos (ICMS) tiene un gran potencial para la medicina regenerativa al ofrecer estrategias alternativas para el tratamiento de enfermedades del corazón. Esta conversión se ha logrado mediante la expresión forzada de los factores definidos, tales como Gata4 (G), MEF2C (M) y Tbx5 (T). Tradicionalmente, los ICMs son generados por un cóctel de virus que expresan estos factores individuales. Sin embargo, la reprogramación de la eficiencia es relativamente baja y la mayor parte de la in vitro G, M, T-transduced fibroblastos no se vuelven totalmente reprogramados, lo que dificulta el estudio de los mecanismos de reprogramación. Recientemente hemos demostrado que la estequiometría de G, M, T es crucial para una eficiente reprogramación iCM. Una estequiometría óptima de G, M, T con un alto nivel relativo de M y bajos niveles de G y T obtenidos mediante el uso de nuestro vector policistrónico MGT (en lo sucesivo referido como MGT) aumentó significativamente la eficiencia de reprogramación y mejora de la calidad iCM in vitro. Aquí le ofrecemos una descripción detallada de la metodología utilizada para generar ICMS con constructo MGT de fibroblastos cardíacos. El aislamiento de los fibroblastos cardíacos, generación de virus para la reprogramación y la evaluación del proceso de reprogramación también se incluyen para proporcionar una plataforma para la generación eficiente y reproducible de ICMS.
Cardiovascular disease remains the leading cause of death worldwide, accounting for 17.3 million deaths per year1. Loss of cardiomyocytes resulting from myocardial infarction (MI) or progressive heart failure is a major cause of morbidity and mortality2. Due to limited regenerative capacity, adult mammalian hearts usually suffer from impaired pump function and heart failure following injury3-6. As such, efficient (re)generation of cardiomyocytes in vivo and in vitro for treatment of heart disease and for disease modeling is a critical issue needing to be addressed.
Recent development of direct reprogramming, which directly reprograms cells from one differentiated phenotype to another without transitioning through the pluripotent state, offers a promising alternative approach for regenerative medicine. The mammalian heart contains abundant cardiac fibroblasts (CFs), which account for approximately half of the cells in heart and massively proliferate upon injury7-9. Thus, the vast pool of CFs could serve as an endogenous source of new CMs for regenerative therapy if they could be directly reprogrammed into functional CMs. It has been shown that a combination of transcription factors, such as Gata4 (G), Mef2c (M) and Tbx5 (T), with or without microRNAs or small molecules can reprogram fibroblasts into iCMs10-26. Importantly, this conversion can also be induced in vivo, and results in an improvement in cardiac function and a reduction in scar size in an infarcted heart16,27-29. These studies indicate that direct cardiac reprogramming may be a potential avenue to heal an injured heart. However, the low efficiency of iCM reprogramming has become a major hurdle for further mechanistic studies. In addition, the reproducibility of cardiac reprogramming is another controversial issue of this technology11,30,31.
Very recently, we generated a complete set of polycistronic constructs encoding G,M,T in all possible splicing orders with identical 2A sequences in a single mRNA. These polycistronic constructs yielded varied G, M and T protein expression levels, which led to significantly different reprogramming efficiency25. The most efficient construct, named MGT, which showed a relatively high Mef2c and low Gata4 and Tbx5 expression, significantly improved reprogramming efficiency and produced large amounts of iCMs with CM markers expression, robust calcium oscillation and spontaneous beating25. Moreover, by using MGT polycistronic construct, our study avoided the use of multiple vectors and generated cells with homogenous expression ratio of G,M,T, thus providing an improved platform for cardiac reprogramming research. To increase experimental reproducibility, here we describe in detail how to isolate fibroblasts, produce retrovirus carrying MGT cassette, generate iCMs and evaluate the reprogramming efficiency.
Access restricted. Please log in or start a trial to view this content.
El protocolo descrito aquí utiliza ratones recién nacidos. Cuidado de los animales y los experimentos se realizan de acuerdo con los lineamientos establecidos por la División de Laboratorio de Medicina Animal (DLAM) en la Universidad de Carolina del Norte, Chapel Hill.
1. Preparación de tampones y Medios de Comunicación
2. Generación de neonatales mouse cardíacos fibroblastos
3. Generación de retrovirus para iCM Reprogramación
Nota: Realice los siguientes pasos en un Gabinete de Seguridad Biológica BSL2 en condiciones estériles. Se recomienda la eliminación adecuada de las células transfectadas, puntas de pipeta y tubos para evitar el riesgo de los riesgos ambientales y de salud.
4. La reprogramación de fibroblastos cardíacos
5. Inmunocitoquímico Análisis de Eficiencia Reprogramación
6. FACS análisis de la eficiencia de reprogramación
Access restricted. Please log in or start a trial to view this content.
Los pasos de reprogramación se resumen por esquema de la Figura 1. Después de la transducción de MGT, la expresión de GFP en la reprogramación de células podrían ser detectados tan pronto como día 3. puromicina selección de células transducidas comienza a partir de 3 días y se mantiene durante las dos primeras semanas si PMX-puro se utiliza constructo -MGT. Por día 10 a día 14, la expresión de los marcadores cardíacos como cTnT y αActinin podría ser detectada tanto por ...
Access restricted. Please log in or start a trial to view this content.
Para exitosa generación iCM al utilizar este protocolo, hay varios factores importantes que tienen un impacto en la eficiencia global. Particularmente las condiciones de fibroblastos de partida y la calidad de codificación retrovirus MGT pueden afectar en gran medida la eficiencia de la reprogramación.
Es importante generar fibroblastos tan fresco y saludable posible. Para el método de cultivo de explantes, los fibroblastos se pueden utilizar antes de siete días después de los explante...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We are grateful for expert technical assistance from the UNC Flow Cytometry Core and UNC Microscopy Core. We thank members of the Qian lab and the Liu lab for helpful discussions and critical reviews of the manuscript. This study was supported by NIH/NHLBI R00 HL109079 grant to Dr. Liu and American Heart Association (AHA) Scientist Development Grant 13SDG17060010 and the Ellison Medical Foundation (EMF) New Scholar Grant AG-NS-1064-13 to Dr. Qian.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
anti-cardiac troponin T | Thermo Scientific | MS-295-PO | 1:200 for FACS and 1:400 for ICC |
anti-GFP | Life Technologies | A11122 | 1:500 for both FACS and ICC |
anti- aActinin | Sigma-Aldrich | A7811 | 1:500 for both FACS and ICC |
anti-Connexin43 | Sigma-Aldrich | C6219 | 1:500 for ICC |
anit-Mef2c | Abcam | ab64644 | 1:1,000 for ICC |
anti-Gata4 | Santa Cruz Biotechnology | sc-1237 | 1:200 for ICC |
anti-Tbx5 | Santa Cruz Biotechnology | sc-17866 | 1:200 for ICC |
Alexa Fluor 488–conjugated donkey anti-rabbit IgG | Jackson ImmunoResearch Inc | 711-545-152 | 1:500 for both FACS and ICC |
Alexa Fluor 647–conjugated donkey anti-mouse IgG | Jackson ImmunoResearch Inc | 715-605-150 | 1:500 for both FACS and ICC |
Cytofix/Cytoperm kit for intracellular staining | BD Biosciences | 554722 | |
Rhod-3 Calcium Imaging Kit | Life Technologies | R10145 | |
Thy1.2 microbeads | Miltenyi Biotec | 130-049-101 | |
Vectashield solution with DAPI | Vector labs | H-1500 | |
FBS | Sigma-Aldrich | F-2442 | |
Trypsin-EDTA (0.05%) | Corning | 25-052 | |
PRMI1640 medium | Life Technologies | 11875-093 | |
B27 supplement | Life Technologies | 17504-044 | |
IMDM | Life Technologies | 12440-053 | |
Opti-MEM Reduced Serum Medium | Life Technologies | 31985-070 | |
M199 medium | Life Technologies | 10-060 | |
DMEM, high glucose | Life Technologies | 10-013 | |
Penicillin-streptomycin | Corning | 30-002 | |
Non-essential amino acids | Life Technologies | 11130-050 | |
Lipofectamine 2000 | Life Technologies | 11668500 | |
blasticidin | Life Technologies | A11139-03 | |
puromycin | Life Technologies | A11138-03 | |
Collagenase II | Worthington | LS004176 | |
polybrene | Millipore | TR-1003-G | |
Triton X-100 | Fisher | BP151-100 | |
CaCl2 | Sigma-Aldrich | C7902 | |
HEPES | Sigma-Aldrich | H4034 | |
NaCl | Sigma-Aldrich | BP358-212 | |
KCl | Sigma-Aldrich | PX1405 | |
Na2HPO4 | Sigma-Aldrich | S7907 | |
Glucose | Sigma-Aldrich | G6152 | |
Bovine serum albumin | Fisher | 9048-46-8 | |
paraformaldehyde | EMS | 15714 | |
Retrovirus Precipitation Solution | ALSTEM | VC-200 | |
0.4% Trypan blue solution | Sigma-Aldrich | T8154 | |
gelatin | Sigma-Aldrich | G1393 | |
Dulbecco's PBS without CaCl2 and MgCl2 (D-PBS, 1x) | Sigma-Aldrich | D8537 | |
HBSS (Hanks Balanced Salt Solution) | Corning | 21022 | |
LS column | Miltenyi Biotec | 130-042-401 | |
0.45 μm cellulose acetate filter | Thermo Scientific | 190-2545 | |
24-well plates | Corning | 3524 | |
10 cm Tissue culture dishes | Thermo Scientific | 172958 | |
60 mm center well culture dish | Corning | 3260 | |
96 Well Clear V-Bottom 2 ml Polypropylene Deep Well Plate | Denville Scientific | P9639 | |
Polystyrene round-bottom tubes with cell-strainer cap | BD Biosciences | 352235 | |
Centrifuge | Eppendorf | 5810R | |
Vortexer MINI | VWR | 58816-121 | |
EVOS FL Auto Cell Imaging System | Life Technologies | AMAFD1000 | |
MACS MultiStand | Miltenyi Biotec | 130-042-303 | |
MidiMACS Separator | Miltenyi Biotec | 130-042-302 | |
Round glass cover slip | Electron Microscopy Sciences | 72195-15 |
Access restricted. Please log in or start a trial to view this content.
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados