JoVE Logo

Iniciar sesión

Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.

En este artículo

  • Resumen
  • Resumen
  • Introducción
  • Protocolo
  • Resultados
  • Discusión
  • Divulgaciones
  • Agradecimientos
  • Materiales
  • Referencias
  • Reimpresiones y Permisos

Resumen

Este artículo presenta un enfoque simple para proporcionar cepas estática gradiente discontinua en un hidrogel celular cargado concéntrico regular alineación de celda para ingeniería de tejidos.

Resumen

Orientación artificial para alineación celular es un tema candente en el campo de la ingeniería de tejidos. La mayoría de la investigación anterior ha investigado solo alineación celular inducida por la cepa en un hidrogel cargadas de célula mediante complejos procesos experimentales y sistemas de control de masas, que se asocian generalmente a problemas de contaminación. Así, en este artículo, proponemos un enfoque simple para construir una gradiente tensión estática usando un chip neumático con una cubierta plástica de PDMS y un sustrato de vidrio transparente UV para la estimulación del comportamiento celular en un hidrogel 3D. Prepolímero de células foto-patternable sobrecarga en la cámara de neumático puede generar una membrana PDMS curva convexa en la cubierta. Después de la reticulación UV, a través de un micropattern circular concéntrica bajo la membrana PDMS curvada y tampón de lavado, un microambiente para la investigación de la célula comportamientos bajo una variedad de cepas degradadas es uno establecido en un único chip fluídico, sin instrumentos externos. Células NIH3T3 fueron demostradas después de observar el cambio en la tendencia de alineación celular bajo dirección de geometría, en cooperación con el estímulo de la cepa, que varió de 15-65% de los hidrogeles. Después de una incubación de 3 días, la geometría de hidrogel había dominado la alineación celular bajo tensión compresiva baja, donde las células alineación a lo largo de la dirección de alargamiento de hidrogel bajo alta tensión a la compresión. Entre éstos, las células demostraron alineación al azar debido a la disipación de la radical orientación de elongación de hidrogel y la orientación de la geometría del hidrogel con dibujos.

Introducción

Servir como un material del bloque que imita un microambiente nativo, un hidrogel que contiene la matriz extracelular (ECM) puede reconstruir biomiméticos tejido andamios para apoyar el crecimiento de la célula. Poseer las funciones de un tejido, alineación de celda organizado es un requisito esencial. Varios 2D (es decir, las células cultivadas en una superficie) y 3D (es decir, las células encapsuladas en un hidrogel) alineaciones de celda se han obtenido por cultivo o encapsular las células o en substratos flexibles con micro- o nano-patrones1. Alineación 3D celular en microarquitectura es más atractiva, como el microambiente está más cercano del tejido propio constructo2,3,4. Un enfoque común para la alineación celular 3D es la localización geométrica de hidrogel forma2,3. Debido al espacio restringido para la proliferación celular en la dirección de eje corto, células objetivo alinear a lo largo de la dirección de eje largo en un hidrogel de micro-patrón. Otro enfoque es aplicar stretch extensible a los hidrogeles para lograr alineación de celdas paralela a la dirección de estiramiento4,5.

Estimulación biofísica en hidrogeles de ECM, como la tensión compresiva o un campo eléctrico, puede regular funciones celulares para la integración adecuada del tejido, proliferación y diferenciación1,2,3. Mucha investigación se ha realizado para investigar el comportamiento celular mediante la aplicación de una condición de tensión a la vez utilizando múltiples control mecánico unidades4,6,7,8,9. Por ejemplo, el uso de motores paso a paso mecánica apretado o estirado en un hidrogel de colágeno de células encapsuladas 3D ha sido un común enfoque7,10. Sin embargo, dicho equipo de control requiere un espacio extra y enfrenta el problema de la contaminación en la incubadora9,7,11,12. Además, el instrumento grande no puede dar un ambiente de control preciso para proporcionar alta reproducibilidad13.

Teniendo en cuenta que hidrogeles cargados de celular se emplean generalmente en la escala micro para aplicaciones biomédicas, es ventajoso combinar técnicas de MEMS para generar un rango de tensión/estiramiento del estímulo a investigar simultáneamente el comportamiento celular en 3D biomiméticos construcciones en vitro2,14,15,16,17,18. Por ejemplo, usando la presión del gas a deformar la membrana PDMS en chips de microfluídica puede dar lugar a varias cepas, conduce la diferenciación celular a diferentes linajes9,16. Sin embargo, hay muchos desafíos técnicos, tales como procesos de fabricación de chips complicados en un cuarto limpio y la integración de software control de motores, bombas, válvulas y gases comprimidos.

En este trabajo, demostramos un enfoque simple para obtener un chip de microfluidos gradiente de tensión estática autosostenible mediante el empleo de un patrón de hidrogel circulares concéntricos y una membrana flexible de PDMS. A diferencia de la mayoría de los enfoques existentes, nuestra plataforma es un dispositivo miniatura portátil y desechable que puede ser fabricado fuera de un salón amarillo y que posee uno mismo-generar tensiones degradadas concéntricos hidrogeles encapsulado en celular, sin equipos mecánicos externos durante la incubación. Comportamientos de células de fibroblastos 3T3 influenciado por una combinación de forma de hidrogel y una variedad de señales de orientación elástico resistencia a la tracción fueron demostrados durante la observación de la alineación celular dentro de entornos 3D ECM-mimético en el chip de gradiente de presión durante 3 días.

Access restricted. Please log in or start a trial to view this content.

Protocolo

1. GelMA Synthesis

  1. Weigh 10 g of gelatin powder and add it to a glass flask with 100 mL ofDulbecco's phosphate-buffered saline (DPBS). Put a magnetic stir bar into the flask and place the flask on a stirring hot plate.
  2. Cover the flask with aluminum foil to avoid water evaporation. Set the hot plate temperature to 50-60 °C and the stirrer at 100 rpm for 1 h to dissolve the gelatin powder well.
  3. After the gelatin has dissolved, add 8 mL of methacrylic anhydride very slowly (one drop per second) using a pipette. Let it react at 60 °C for 3 h.
  4. Add pre-warmed DPBS (40 °C) to the flask to a final volume of 500 mL and allow this mix well for 15 min to stop the reaction.
  5. Meanwhile, cut a dialysis membrane (14 kDa cut-off molecular weight) into several 25 cm-long tubes. Immerse them in deionized (DI) water for 15 min and make a knot to close one end of the dialysis tubes.
  6. Load the appropriate amount (30 - 60 mL) of the polymer solution into the dialysis tubes and close the other end. Place them in a 5-L plastic beaker with DI water for a week. Renew the DI water twice a day and maintain the solution at 40 - 50 °C during the dialysis process.
  7. Collect the solution from the tube in a 500-mL glass bottle. Pour ~450 - 500 mL of solution in a 500-mL filter cup (pore size of 0.22 µm) and apply a vacuum to the filter cup to force the solution to pass through the filter membrane for sterilization.
  8. Transfer the sterilized polymer into several 50-mL sterilized tubes and store them in a -80 °C freezer for 3 - 5 days.
  9. Freeze-dry the -80 °C polymer for 1 week using a freeze dryer to form GelMA. Store the GelMA in a -80 °C freezer.

2. 3-(Trimethoxysilyl)propyl Methacrylate (TMSPMA) Modification

  1.  Cut commercial glass slides into two small pieces (25 mm x 37.5 mm) and immerse them in 0.5 M NaOH solution for 4 h. Wash the slides with a large amount of DI water.
  2. Place the slide on a rack inside a glass container with 95% ethanol and clean using an ultrasonicator at 43 kHz for 15 min. Air dry the glass slide.
  3. Immerse the glass slides in 5% TMSPMA in 99.5% ethanol for 1 h.
  4. Wash the slides in 95% ethanol, air dry the slides, and anneal the TMSPMA coating in an oven at 80 °C for 2 h.

3. Chip Fabrication

  1. Take one 2 mm- and one 0.3 mm-thick polymethylmethacrylate (PMMA) plate, apply double-sided tape to one side of the PMMA surface, and release the liner on one side. Leave two 2 mm-thick PMMA plates and one 1 mm-thick plate without double-sided tape.
  2. Laser-cut a 2 mm-thick PMMA plate without double-sided tape to 42 mm x 30 mm to make the bottom plate. Cut a 2 mm-thick PMMA plate with double-sided tape to make the boundary frame, with outer dimensions of 42 mm x 30 mm and inner dimensions of 37.5 mm x 25 mm.
  3. Laser-cut the 0.3 mm-thick PMMA plate with double-sided tape into a 12-mm center circle with two 2 mm-wide and 8 mm-long flow channels on opposite sides of the circle (Figure 1a).
  4. To prepare the PMMA mold for casting the PDMS cover, assemble the three pieces of PMMA components from steps 3.2-3.3 (Figure 1b) using double-sided tape.
  5. Laser-cut a 2 mm-thick PMMA plate with double-sided tape into a 5 cm x 5 cm piece with a 3 x 3 array of 8.5 mm x 8.5 mm hollow rectangles. Cut another 5 cm x 5 cm piece with a 3 x 3 array of 4-mm hollow circles. Laser-cut a 1 mm-thick PMMA plate without double-sided tape into a 5 cm x 5 cm PMMA bottom plate.
  6. Prepare the PMMA mold for casting the PDMS plug by assembling the three pieces of PMMA components from step 3.5 (Figure 1c) using double-sided tape.
  7. Prepare the PDMS cover and PDMS plug by properly mixing 30 g of PDMS elastomer and 3 g of PDMS curing agent; degas the mixture under a vacuum chamber for 1 h.
  8. Cast 1.8-2.0 g of the mixture into the PMMA mold for the PDMS cover and use the appropriate amount to fill each cavity of the PMMA mold for the PDMS plug. Cast 10 g of uncured PDMS mixture in a blank 10-cm plastic plate. Put these molds in a vacuum chamber to degas for 30 min.
  9. Cure the PDMS for 2 h at 80 °C. After cooling down the cured PDMS on the mold, detach the PDMS covers and the PDMS plugs from the PMMA molds.
  10. Punch two holes with diameters of about 3 mm at the ends of flow channels of the PDMS covers.
  11. Cut the PDMS sheet molded from the 10-cm plastic plate into many 1 cm x 1 cm cubes and punch a 3-mm hole in each PDMS cube. Glue two uncured 1 cm x 1 cm PDMS cubes onto the openings of the PDMS cover (to serve as medium reservoirs and to aid in the curing process of the gradient circular hydrogel patterns) and cure for 1 h at 80 °C.
  12. Bond the PDMS covers with the two PDMS reservoirs onto a TMSPMA-coated slide by pre-treating the bonding side of the PDMS cover and the TMSPMA-coated slide under an oxygen plasma machine (30 W RF power (high mode) and 600 mTorr compressed air) or a high-frequency electronic corona generator (115 V, 50/60 Hz, 0.35 A) for 90 s of O2 plasma treatment.
  13. Contact the plasma-treated surface of the PDMS covers and the TMSPMA slide and press them closely for permanent bonding through the formation of an Si-O-Si bond.
    NOTE: Placing the chip in an oven at 80 °C for 1 h can further enhance the bonding strength.
  14. After cooling, immerse the chips in 95% ethanol for 15 min and air dry. Then, sterilize the chips under UV irradiation for 1 h and store them in a box wrapped in aluminum foil in the laminar hood.

4. Static Gradient Strain on the Cell-laden Hydrogel

  1. Print and cut a piece of photomask, 25 mm x 37.5 mm in size, by printing the layout in Figure 2b on a transparent film. Adjust the printed size of Figure 2b to match the dimension in Figure 2a.
  2. Prepare 100 mL of DMEM medium with 10% FBS, 1% Pen-Strep, and 250 mL of DPBS in a 37 °C water bath to use as the cell culture medium.
  3. Weigh 25 mg of freeze-dried GelMA into 0.3 mL of prewarmed (37 °C) cell culture medium in a 1.5-mL black microcentrifuge tube. Put the microcentrifuge tube on a laboratory stirrer/hot plate until the GelMA dissolves in the medium.
  4. Weigh 50 mg of photoinitiator into 1 ml of DPBS in a microcentrifuge tube and place it in an 80 °C oven for 15 min or until the photoinitiator has dissolved.
  5. Take 25 µL of the 10% photoinitiator from step 4.4 and add it to the microcentrifuge tube from step 4.3. Pipette several times to mix well.
  6. Count 3 x 106 NIH 3T3 cells using an automated cell counter. Centrifuge the suspension at 200 x g for 5 min, discard the supernatant, and re-suspend the cells in 175 µL of cell culture medium.
  7. Add the cell solution from step 4.6 to the microcentrifuge tube from step 4.5 to get a prepolymer cell solution of 5% GelMA, 0.5% photoinitiator, and ~6 x 106 3T3 cells/mL. After mixing, load 100 µL of cell prepolymer in a 100-µL micro syringe.
  8. Manually align (see Figure 3a) a piece of the photomask onto the bottom slide of the sterilized gradient strain chip and simply fix the position using a small drop of DI water in between. Connect the 100-µL micro-syringe loaded with prepolymer cell solution to the inlet of the chip.
  9. Place (see Figure 3b) 50 µL of prepolymer cell solution in the flow channel using the micro-syringe and then plug the outlet using a PDMS plug. Inject an extra 40 µL of solution to create a convex bulge in the circular PDMS membrane.
  10. Move the chip with the photomask (bottom), micro-syringe (inlet), and PDMS plug (outlet) from step 4.9 under a UV lamp (365 nm, 9 mW/cm2) and expose it for 30 - 45 s to crosslink the concentric circular hydrogel in the fluidic chamber.
  11. Remove the PDMS plug and the micro-syringe to release the liquid pressure (see Figure 3c). Use a 1-mL syringe loaded with prewarmed DPBS to wash out uncrosslinked resins 3 times by flushing from the inlet to the outlet.
  12. Fill the flow channel with about 100 µL of cell culture medium.
  13. Place the chip in a sterilized culture dish and culture in a 5% CO2 atmosphere at 37 °C for a week. Refresh the medium every day.
  14. Take images of three chips on day 0 after 4 h of incubation, as a control group, and three chips on day 3, as the experimental set, using a microscope with a 20X objective. Measure the line width of each hydrogel from line 1 to line 12 using software (e.g., ImageJ) to calculate the compress strains ( Figure 4).
    NOTE: The elongation percentage is calculated by dividing the value of the line width difference between 40 µL and 0 µL by the line width at 40 µL.

5. Cell Staining for Alignment Analysis

  1. Use a syringe to inject 4% paraformaldehyde (PFA) in DPBS at RT into the flow chip for 15 min for the fixation of the cell-laden hydrogel.
    NOTE: Caution. PFA is toxic and should be handled with care.
  2. Replace the solution with 0.5% cell membrane permeating solution in DPBS for 10 min to permeabilize the cell membrane at RT.
  3. PBS wash the samples 3 times with 5- to 10-min interval between washes (using a loaded syringe, as in step 5.1).
  4. Load 1% BSA solution into the fluidic channel for 45-60 min at RT (using a loaded syringe through the inlet port).
  5. Add 1.5 mL of methanol into the vial with Alexa Fluor 488 phalloidin to yield a final concentration of 6.6 µM stock solution.
  6. Take 5 µL of Alexa Fluor 488 phalloidin from step 5.5 and dilute it in 200 µL of DPBS with 0.1% BSA to form a final concentration of 0.165 µM Alexa Fluor 488 phalloidin.
  7. Add 200 µL of the mixture solution to the fluidic channel using a micropipette and incubate the chip at 37 °C for 45 - 60 min for actin staining. PBS wash (as above) the samples 3 times.
  8. Prepare 1 µg/mL DAPI in PBS, flow it through the chip, and stain cell nuclei at 37 °C for 5 min.
  9. Pipette DPBS into the fluidic channel to wash out the staining solution and refill the fluidic chamber with PBS solution to take images with a fluorescence microscope.
  10. Capture the fluorescent images of the 3T3 cells in the hydrogels using an inverted fluorescence microscope under 40X magnification with a CCD detector and filter sets of ex/em at 488/520 nm and 358/461 nm for Alexa Fluor 488 phalloidin (actin) and DAPI (nucleus), respectively.

Access restricted. Please log in or start a trial to view this content.

Resultados

Para comparar las variaciones mecánicas entre cada hidrogel circular en el chip de estimulación completa tensión degradado, medimos el ancho de línea de cada hidrogel circular en dos de las virutas del mismo, con los volúmenes de inyección de 0 μL (figura 4a) y 40 μl (Figura 4b), respectivamente. El alargamiento porcentual en cada círculo se calcularon dividiendo el alargamiento en el chip 40 μl inyectado por las anchur...

Access restricted. Please log in or start a trial to view this content.

Discusión

En este papel, Divulgamos sobre un enfoque simple para comparar comportamiento de alineación de celda después de hidrogel forma orientación y tramo extensible. Una membrana PDMS flexible crea una curvatura en forma de cúpula para generar diferentes alturas de hidrogeles circulares concéntricos. Después de soltar la presión, la membrana PDMS automáticamente aplica fuerza a los hidrogeles micro-patrón para formar el gradiente tensión/alargamiento, con un máximo en el centro y un mínimo en el límite exterior. C...

Access restricted. Please log in or start a trial to view this content.

Divulgaciones

Los autores no tienen nada que revelar.

Agradecimientos

Este proyecto fue apoyado por el graduado estudiante de estudio al exterior programa (NSC-101-2917-I-007-010); el programa de Ingeniería Biomédica (NSC-101-2221-E-007-032-MY3); y el programa nacional de nanotecnología (NSC-101-2120-M-007-001-), Consejo Nacional de ciencia de R.O.C., Taiwán. Los autores desean agradecer a Prof. Ali Khademhosseini, Gulden Camci-Unal, Arghya Paul y Ronglih Liao en Harvard Medical School para compartir la tecnología de encapsulación de hidrogel y de la célula.

Access restricted. Please log in or start a trial to view this content.

Materiales

NameCompanyCatalog NumberComments
1.5 mL black microcentrifuge tubeArgos Technologies 03-391-161This one can be replaced with a neutral color of 1.5 mL tube covered with aluminun foil
10x DPBSSigma-Aldrich56064C
Alexa Fluor 488 phalloidin InvitrogenA12379 
BSASigmaA1595
CalceinMolecular ProbeC1430For labeling viable cells
CCDPCO. ImagingPixelfly qe
Cell membrane permeating solutionSigma-AldrichX1000.5% Triton X-100 for permeating cell membrane
DAPISigma-AldrichD8417Cell nucleus staining
Dialysis membraneSigma-AldrichD9527Molecular weight cut-off = 14,000
DMEMGibco11995-065
Double-side tape3M8003
FBSHycloneSH30071.03
GelatinSigma-AldrichG2500gel strength 300, type A, from porcine skin
High frequency electronic corona generatorElectro-technic productsMODEL BD-20
Methacrylic AnhydrideSigma-Aldrich276685
Micro syringeHamilton8050150 μL 
MicroscopeOlympusIX71Include two filter sets: LF405/LP-B-000 and LF488/LP-C-000 from Semrock
Oxygen plasma machineHarrick plasmaPDC-001
ParaformaldehydeSigma-AldrichP6148For fixing cell
PDMSDOW CORNINGSylgard 184Mixture for PDMS chip cast-molding fabrication
Pen-StrepGibco10378-016penicillin/streptomycin
PhotoinitiatorCIBAIrgacure 2959
Propidium iodideSigma-AldrichP4170For labeling dead cells
Sterile Filtration cupMilliporeSCGPT05RE
TMSPMASigma-Aldrich440159For hydrogel immobilization
UltrasonicatorDeltaD150H150W, 43kHz
UV lightDAIHANWUV-L10
Freeze DryerFIRSTEK150311025
NIH3T3(fibroblast)Food Industry Research and Development Institute(FIRDI)08C0011
MOXI Z Mini Automated Cell CounterORFLOMXZ001

Referencias

  1. Simmons, C. S., Petzold, B. C., Pruitt, B. L. Microsystems for biomimetic stimulation of cardiac cells. Lab Chip. 12 (18), 3235-3248 (2012).
  2. Aubin, H., et al. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials. 31 (27), 6941-6951 (2010).
  3. Guan, J., et al. The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials. 32 (24), 5568-5580 (2011).
  4. Wan, C. R., Chung, S., Kamm, R. D. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Ann Biomed Eng. 39 (6), 1840-1847 (2011).
  5. Huh, D., et al. Reconstituting organ-level lung functions on a chip. Science. 328 (5986), 1662-1668 (2010).
  6. Li, X., Chu, J. S., Yang, L., Li, S. Anisotropic effects of mechanical strain on neural crest stem cells. Ann. Biomed. Eng. 40 (3), 598-605 (2012).
  7. Butcher, J. T., Barrett, B. C., Nerem, R. M. Equibiaxial strain stimulates fibroblastic phenotype shift in smooth muscle cells in an engineered tissue model of the aortic wall. Biomaterials. 27 (30), 5252-5258 (2006).
  8. Ramon-Azcon, J., et al. Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells. Lab Chip. 12 (16), 2959-2969 (2012).
  9. Park, S. H., Sim, W. Y., Min, B. H., Yang, S. S., Khademhosseini, A., Kaplan, D. L. Chip-Based Comparison of the Osteogenesis of Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells under Mechanical Stimulation. PLoS One. 7 (9), e46689(2012).
  10. Gould, R. A., et al. Cyclic Strain Anisotropy Regulates Valvular Interstitial Cell Phenotype and Tissue Remodeling in 3D Culture. Acta Biomater. 8 (5), 1710-1719 (2012).
  11. Kurpinski, K., Chu, J., Hashi, C., Li, S. Proc Anisotropic mechanosensing by mesenchymal stemcells. Natl Acad Sci USA. 103 (44), 16095-16100 (2006).
  12. Sim, W. Y., Park, S. W., Park, S. H., Min, B. H., Park, S. R., Yang, S. S. A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Lab Chip. 7 (12), 1775-1782 (2007).
  13. Vader, D., Kabla, A., Weitz, D., Mahadevan, L. Strain-Induced Alignment in Collagen Gels. PLoS One. 4 (6), e5902(2009).
  14. Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J., Heilshorn, S. C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A. 18 (7-8), 806-815 (2012).
  15. Wan, J. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery. Polymers. 4 (2), 1084-1108 (2012).
  16. Moraes, C., Wang, G., Sun, Y., Simmons, C. A. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials. 31 (3), 577-584 (2010).
  17. Keung, A. J., Kumar, S., Schaffer, D. V. Presentation Counts: Microenvironmental Regulation of Stem Cells by Biophysical and Material. Cues. Annu Rev Cell Dev Biol. 26, 533-556 (2010).
  18. Segers, V. F., Lee, R. T. Stem-cell therapy for cardiac disease. Nature. 451 (7181), 937-942 (2008).
  19. Hsieh, H. Y., et al. Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment. Lab Chip. 14 (3), 482-493 (2014).

Access restricted. Please log in or start a trial to view this content.

Reimpresiones y Permisos

Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos

Solicitar permiso

Explorar más artículos

Cepa gradiente de bioingenier an mero 126de estimulaci n mec nicacelular de metacrilato de alineaci nPDMSgelatina GelMAhidrogel

This article has been published

Video Coming Soon

JoVE Logo

Privacidad

Condiciones de uso

Políticas

Investigación

Educación

ACERCA DE JoVE

Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados