JoVE Logo

Oturum Aç

Bu içeriği görüntülemek için JoVE aboneliği gereklidir. Oturum açın veya ücretsiz deneme sürümünü başlatın.

Bu Makalede

  • Özet
  • Özet
  • Giriş
  • Protokol
  • Sonuçlar
  • Tartışmalar
  • Açıklamalar
  • Teşekkürler
  • Malzemeler
  • Referanslar
  • Yeniden Basımlar ve İzinler

Özet

Bu makalede sürekli sigara degrade statik suşlar doku mühendisliği için hücre hizalama düzenleyen konsantrik bir hücre yüklü hidrojel Tarih sağlamak için basit bir yaklaşım sunar.

Özet

Artificial guidance for cellular alignment is a hot topic in the field of tissue engineering. Most of the previous research has investigated single strain-induced cellular alignment on a cell-laden hydrogel by using complex experimental processes and mass controlling systems, which are usually associated with contamination issues. Thus, in this article, we propose a simple approach to building a gradient static strain using a fluidic chip with a plastic PDMS cover and a UV transparent glass substrate for the stimulation of cellular behavior in a 3D hydrogel. Overloading photo-patternable cell prepolymer in the fluidic chamber can generate a convex curved PDMS membrane on the cover. After UV crosslinking, through a concentric circular micropattern under the curved PDMS membrane, and buffer washing, a microenvironment for investigating cell behaviors under a variety of gradient strains is self-established in a single fluidic chip, without external instruments. NIH3T3 cells were demonstrated after observing the change in the cellular alignment trend under geometry guidance, in cooperation with strain stimulation, which varied from 15 - 65% on hydrogels. After a 3-day incubation, the hydrogel geometry dominated the cell alignment under low compressive strain, where cells aligned along the hydrogel elongation direction under high compressive strain. Between these, the cells showed random alignment due to the dissipation of the radical guidance of hydrogel elongation and the geometry guidance of the patterned hydrogel.

Giriş

Yerel bir microenvironment taklit eden bir blok malzeme olarak hizmet veren, hücre dışı Matriks (ECM) içeren bir hidrojel yeniden hücre büyümesini desteklemek için biomimetic doku iskele inşa edebilirsiniz. Bir doku fonksiyonları sahip olmak, organize hücre hizalama temel bir gereksinimdir. Çeşitli (Yani, bir yüzeye kültürlü hücreleri) 2D ve 3D (Yani, bir hidrojel kapsüllenmiş hücreleri) kültür veya hücreleri veya mikro esnek yüzeyler üzerinde Kapsüllenen tarafından elde hücre hizalamaları-ya da nano kalıpları1. Microenvironment yerel doku yapısı2,3,4' e daha yakın olduğu gibi 3D hücre hizalama mikro mimarisi içinde daha çekicidir. 3D hücre hizalama için bir ortak yaklaşım hidrojel şekil2,3geometrik işaretimiz. Nedeniyle kısıtlı alan kısa eksenli yönde hücre çoğalması için hücreleri mikro desenli hidrojel uzun ekseni yönünde boyunca Hizala hedefliyoruz. Çekme dayanımı streç hücre hizalama streç yön4,5' e paralel elde etmek için hydrogels uygulamak için başka bir yaklaşımdır.

Biyofiziksel stimülasyon basınç zorlanma gibi ECM hydrogels üzerinde veya bir elektrik alanı, hücre fonksiyonları için uygun doku Tümleştirme, yayılması ve farklılaşma1,2,3düzenleyen. Hücresel davranış birden çok mekanik denetim birimleri4,6,7,8,9kullanarak bir defada bir yük durumu uygulayarak araştırmak için çok araştırma yapılmıştır. Örneğin, mekanik adım motorlar kullanımı sıkılmış veya 3D cep kapsüllenmiş kollajen hidrojel üzerinde gerilmiş ortak bir yaklaşım7,10oldu. Ancak, bu tür kontrol araçlar ilave alanı gerektirir ve kirlenme kuluçka makinesi7,9,11,12sorunu karşı karşıya. Buna ek olarak, büyük araç yüksek tekrarlanabilirlik13sağlamak için bir hassas kontrol ortamı veremem.

Hücre yüklü hydrogels genellikle Biyomedikal uygulamalar için mikro ölçekte istihdam edilmektedir göz önüne alındığında, MEMS teknikleri zorlanma/streç stimülasyon aynı anda 3D biomimetic yapıları vitro2,14,15,16,17,18cep davranışları araştırmak için bir dizi oluşturmak için birleştirmek için avantajlıdır. Örneğin, gaz basıncı PDMS membran mikrosıvısal fiş deforme kullanarak çeşitli suşları, hücre farklılaşması farklı soy9,16' sürüş için çıkmasına neden olabilir. Ancak, karmaşık çip üretim süreçlerinde bir temiz oda ve yazılım denetim Tümleştirme motor, pompa, vanalar ve sıkıştırılmış gazlar gibi pek çok teknik sorun vardır.

Bu çalışmada, biz kendi kendini idame ettiren bir degrade statik yük mikrosıvısal çip bir eş merkezli dairesel hidrojel desen ve esnek bir PDMS membran istihdam ederek elde etmek için basit bir yaklaşım göstermek. Varolan yaklaşımlar en aksine, bizim bu sarı odanın dışında sahte olduğu ve kuluçka sırasında dış mekanik aletler olmadan konsantrik hücre kapsüllü hydrogels üzerinde gradyan suşları kendini üreten sahip bir taşınabilir ve tek kullanımlık minyatür aygıt platformudur. Çekme dayanımı streç rehberlik ipuçları çeşitli degrade zorlanma yongası 3D ECM mimetic ortamlar içinde hücre hizalama 3 gün boyunca gözlem sırasında gösterdi ve 3T3 fibroblast hücre davranışları hidrojel şekil kombinasyonu tarafından etkiledi.

Access restricted. Please log in or start a trial to view this content.

Protokol

1. GelMA Synthesis

  1. Weigh 10 g of gelatin powder and add it to a glass flask with 100 mL ofDulbecco's phosphate-buffered saline (DPBS). Put a magnetic stir bar into the flask and place the flask on a stirring hot plate.
  2. Cover the flask with aluminum foil to avoid water evaporation. Set the hot plate temperature to 50-60 °C and the stirrer at 100 rpm for 1 h to dissolve the gelatin powder well.
  3. After the gelatin has dissolved, add 8 mL of methacrylic anhydride very slowly (one drop per second) using a pipette. Let it react at 60 °C for 3 h.
  4. Add pre-warmed DPBS (40 °C) to the flask to a final volume of 500 mL and allow this mix well for 15 min to stop the reaction.
  5. Meanwhile, cut a dialysis membrane (14 kDa cut-off molecular weight) into several 25 cm-long tubes. Immerse them in deionized (DI) water for 15 min and make a knot to close one end of the dialysis tubes.
  6. Load the appropriate amount (30 - 60 mL) of the polymer solution into the dialysis tubes and close the other end. Place them in a 5-L plastic beaker with DI water for a week. Renew the DI water twice a day and maintain the solution at 40 - 50 °C during the dialysis process.
  7. Collect the solution from the tube in a 500-mL glass bottle. Pour ~450 - 500 mL of solution in a 500-mL filter cup (pore size of 0.22 µm) and apply a vacuum to the filter cup to force the solution to pass through the filter membrane for sterilization.
  8. Transfer the sterilized polymer into several 50-mL sterilized tubes and store them in a -80 °C freezer for 3 - 5 days.
  9. Freeze-dry the -80 °C polymer for 1 week using a freeze dryer to form GelMA. Store the GelMA in a -80 °C freezer.

2. 3-(Trimethoxysilyl)propyl Methacrylate (TMSPMA) Modification

  1.  Cut commercial glass slides into two small pieces (25 mm x 37.5 mm) and immerse them in 0.5 M NaOH solution for 4 h. Wash the slides with a large amount of DI water.
  2. Place the slide on a rack inside a glass container with 95% ethanol and clean using an ultrasonicator at 43 kHz for 15 min. Air dry the glass slide.
  3. Immerse the glass slides in 5% TMSPMA in 99.5% ethanol for 1 h.
  4. Wash the slides in 95% ethanol, air dry the slides, and anneal the TMSPMA coating in an oven at 80 °C for 2 h.

3. Chip Fabrication

  1. Take one 2 mm- and one 0.3 mm-thick polymethylmethacrylate (PMMA) plate, apply double-sided tape to one side of the PMMA surface, and release the liner on one side. Leave two 2 mm-thick PMMA plates and one 1 mm-thick plate without double-sided tape.
  2. Laser-cut a 2 mm-thick PMMA plate without double-sided tape to 42 mm x 30 mm to make the bottom plate. Cut a 2 mm-thick PMMA plate with double-sided tape to make the boundary frame, with outer dimensions of 42 mm x 30 mm and inner dimensions of 37.5 mm x 25 mm.
  3. Laser-cut the 0.3 mm-thick PMMA plate with double-sided tape into a 12-mm center circle with two 2 mm-wide and 8 mm-long flow channels on opposite sides of the circle (Figure 1a).
  4. To prepare the PMMA mold for casting the PDMS cover, assemble the three pieces of PMMA components from steps 3.2-3.3 (Figure 1b) using double-sided tape.
  5. Laser-cut a 2 mm-thick PMMA plate with double-sided tape into a 5 cm x 5 cm piece with a 3 x 3 array of 8.5 mm x 8.5 mm hollow rectangles. Cut another 5 cm x 5 cm piece with a 3 x 3 array of 4-mm hollow circles. Laser-cut a 1 mm-thick PMMA plate without double-sided tape into a 5 cm x 5 cm PMMA bottom plate.
  6. Prepare the PMMA mold for casting the PDMS plug by assembling the three pieces of PMMA components from step 3.5 (Figure 1c) using double-sided tape.
  7. Prepare the PDMS cover and PDMS plug by properly mixing 30 g of PDMS elastomer and 3 g of PDMS curing agent; degas the mixture under a vacuum chamber for 1 h.
  8. Cast 1.8-2.0 g of the mixture into the PMMA mold for the PDMS cover and use the appropriate amount to fill each cavity of the PMMA mold for the PDMS plug. Cast 10 g of uncured PDMS mixture in a blank 10-cm plastic plate. Put these molds in a vacuum chamber to degas for 30 min.
  9. Cure the PDMS for 2 h at 80 °C. After cooling down the cured PDMS on the mold, detach the PDMS covers and the PDMS plugs from the PMMA molds.
  10. Punch two holes with diameters of about 3 mm at the ends of flow channels of the PDMS covers.
  11. Cut the PDMS sheet molded from the 10-cm plastic plate into many 1 cm x 1 cm cubes and punch a 3-mm hole in each PDMS cube. Glue two uncured 1 cm x 1 cm PDMS cubes onto the openings of the PDMS cover (to serve as medium reservoirs and to aid in the curing process of the gradient circular hydrogel patterns) and cure for 1 h at 80 °C.
  12. Bond the PDMS covers with the two PDMS reservoirs onto a TMSPMA-coated slide by pre-treating the bonding side of the PDMS cover and the TMSPMA-coated slide under an oxygen plasma machine (30 W RF power (high mode) and 600 mTorr compressed air) or a high-frequency electronic corona generator (115 V, 50/60 Hz, 0.35 A) for 90 s of O2 plasma treatment.
  13. Contact the plasma-treated surface of the PDMS covers and the TMSPMA slide and press them closely for permanent bonding through the formation of an Si-O-Si bond.
    NOTE: Placing the chip in an oven at 80 °C for 1 h can further enhance the bonding strength.
  14. After cooling, immerse the chips in 95% ethanol for 15 min and air dry. Then, sterilize the chips under UV irradiation for 1 h and store them in a box wrapped in aluminum foil in the laminar hood.

4. Static Gradient Strain on the Cell-laden Hydrogel

  1. Print and cut a piece of photomask, 25 mm x 37.5 mm in size, by printing the layout in Figure 2b on a transparent film. Adjust the printed size of Figure 2b to match the dimension in Figure 2a.
  2. Prepare 100 mL of DMEM medium with 10% FBS, 1% Pen-Strep, and 250 mL of DPBS in a 37 °C water bath to use as the cell culture medium.
  3. Weigh 25 mg of freeze-dried GelMA into 0.3 mL of prewarmed (37 °C) cell culture medium in a 1.5-mL black microcentrifuge tube. Put the microcentrifuge tube on a laboratory stirrer/hot plate until the GelMA dissolves in the medium.
  4. Weigh 50 mg of photoinitiator into 1 ml of DPBS in a microcentrifuge tube and place it in an 80 °C oven for 15 min or until the photoinitiator has dissolved.
  5. Take 25 µL of the 10% photoinitiator from step 4.4 and add it to the microcentrifuge tube from step 4.3. Pipette several times to mix well.
  6. Count 3 x 106 NIH 3T3 cells using an automated cell counter. Centrifuge the suspension at 200 x g for 5 min, discard the supernatant, and re-suspend the cells in 175 µL of cell culture medium.
  7. Add the cell solution from step 4.6 to the microcentrifuge tube from step 4.5 to get a prepolymer cell solution of 5% GelMA, 0.5% photoinitiator, and ~6 x 106 3T3 cells/mL. After mixing, load 100 µL of cell prepolymer in a 100-µL micro syringe.
  8. Manually align (see Figure 3a) a piece of the photomask onto the bottom slide of the sterilized gradient strain chip and simply fix the position using a small drop of DI water in between. Connect the 100-µL micro-syringe loaded with prepolymer cell solution to the inlet of the chip.
  9. Place (see Figure 3b) 50 µL of prepolymer cell solution in the flow channel using the micro-syringe and then plug the outlet using a PDMS plug. Inject an extra 40 µL of solution to create a convex bulge in the circular PDMS membrane.
  10. Move the chip with the photomask (bottom), micro-syringe (inlet), and PDMS plug (outlet) from step 4.9 under a UV lamp (365 nm, 9 mW/cm2) and expose it for 30 - 45 s to crosslink the concentric circular hydrogel in the fluidic chamber.
  11. Remove the PDMS plug and the micro-syringe to release the liquid pressure (see Figure 3c). Use a 1-mL syringe loaded with prewarmed DPBS to wash out uncrosslinked resins 3 times by flushing from the inlet to the outlet.
  12. Fill the flow channel with about 100 µL of cell culture medium.
  13. Place the chip in a sterilized culture dish and culture in a 5% CO2 atmosphere at 37 °C for a week. Refresh the medium every day.
  14. Take images of three chips on day 0 after 4 h of incubation, as a control group, and three chips on day 3, as the experimental set, using a microscope with a 20X objective. Measure the line width of each hydrogel from line 1 to line 12 using software (e.g., ImageJ) to calculate the compress strains ( Figure 4).
    NOTE: The elongation percentage is calculated by dividing the value of the line width difference between 40 µL and 0 µL by the line width at 40 µL.

5. Cell Staining for Alignment Analysis

  1. Use a syringe to inject 4% paraformaldehyde (PFA) in DPBS at RT into the flow chip for 15 min for the fixation of the cell-laden hydrogel.
    NOTE: Caution. PFA is toxic and should be handled with care.
  2. Replace the solution with 0.5% cell membrane permeating solution in DPBS for 10 min to permeabilize the cell membrane at RT.
  3. PBS wash the samples 3 times with 5- to 10-min interval between washes (using a loaded syringe, as in step 5.1).
  4. Load 1% BSA solution into the fluidic channel for 45-60 min at RT (using a loaded syringe through the inlet port).
  5. Add 1.5 mL of methanol into the vial with Alexa Fluor 488 phalloidin to yield a final concentration of 6.6 µM stock solution.
  6. Take 5 µL of Alexa Fluor 488 phalloidin from step 5.5 and dilute it in 200 µL of DPBS with 0.1% BSA to form a final concentration of 0.165 µM Alexa Fluor 488 phalloidin.
  7. Add 200 µL of the mixture solution to the fluidic channel using a micropipette and incubate the chip at 37 °C for 45 - 60 min for actin staining. PBS wash (as above) the samples 3 times.
  8. Prepare 1 µg/mL DAPI in PBS, flow it through the chip, and stain cell nuclei at 37 °C for 5 min.
  9. Pipette DPBS into the fluidic channel to wash out the staining solution and refill the fluidic chamber with PBS solution to take images with a fluorescence microscope.
  10. Capture the fluorescent images of the 3T3 cells in the hydrogels using an inverted fluorescence microscope under 40X magnification with a CCD detector and filter sets of ex/em at 488/520 nm and 358/461 nm for Alexa Fluor 488 phalloidin (actin) and DAPI (nucleus), respectively.

Access restricted. Please log in or start a trial to view this content.

Sonuçlar

Mekanik varyasyonları arasında tamamlanan degrade zorlanma stimülasyon yongası dairesel her hidrojel karşılaştırmak için iki enjeksiyon miktarlar 0 µL (şekil 4a) ve 40 µL (şekil 4b) ile aynı fiş dairesel her hidrojel çizgi genişlikleri sırasıyla şiddetindeydi. Her daire, yüzde elongations karşılık gelen hydrogels 0 µL enjekte yongası (şekil 4 c) çizgi genişlikleri 40 µL ...

Access restricted. Please log in or start a trial to view this content.

Tartışmalar

Bu yazıda, hücre hizalama davranışını hidrojel şekil rehberlik ve gerilme streç sonra karşılaştırmak için basit bir yaklaşım üzerinde rapor. Esnek PDMS membran konsantrik dairesel hydrogels farklı yükseklikte üretmek için bir kubbe seklinde eğrilik oluşturur. Basınç bırakmadan sonra PDMS membran degrade zorlanma/uzama, en merkezi ve en azından dış sınır oluşturmak için mikro-desenli hydrogels için kuvvet otomatik olarak uygular. Degrade zorlanma oluşumu esnek PDMS membran ve sıvı çip ...

Access restricted. Please log in or start a trial to view this content.

Açıklamalar

Yazarlar ifşa gerek yok.

Teşekkürler

Bu proje Lisansüstü Öğrenci Çalışma yurtdışında Program (NSC-101-2917-I-007-010 tarafından) destek verdi; Biyomedikal Mühendisliği programı (NSC-101-2221-E-007-032-MY3); ve nanoteknoloji Ulusal Program (NSC-101-2120-M-007-001-), R.O.C., Tayvan Ulusal Bilim Konseyi. Yazarlar Prof. Ali Khademhosseini, gülden Camci-Ünal, Arghya Paul ve Ronglih Liao, Harvard Tıp Okulu hidrojel ve hücre kapsülleme teknoloji paylaşımı için teşekkür etmek istiyorum.

Access restricted. Please log in or start a trial to view this content.

Malzemeler

NameCompanyCatalog NumberComments
1.5 mL black microcentrifuge tubeArgos Technologies 03-391-161This one can be replaced with a neutral color of 1.5 mL tube covered with aluminun foil
10x DPBSSigma-Aldrich56064C
Alexa Fluor 488 phalloidin InvitrogenA12379 
BSASigmaA1595
CalceinMolecular ProbeC1430For labeling viable cells
CCDPCO. ImagingPixelfly qe
Cell membrane permeating solutionSigma-AldrichX1000.5% Triton X-100 for permeating cell membrane
DAPISigma-AldrichD8417Cell nucleus staining
Dialysis membraneSigma-AldrichD9527Molecular weight cut-off = 14,000
DMEMGibco11995-065
Double-side tape3M8003
FBSHycloneSH30071.03
GelatinSigma-AldrichG2500gel strength 300, type A, from porcine skin
High frequency electronic corona generatorElectro-technic productsMODEL BD-20
Methacrylic AnhydrideSigma-Aldrich276685
Micro syringeHamilton8050150 μL 
MicroscopeOlympusIX71Include two filter sets: LF405/LP-B-000 and LF488/LP-C-000 from Semrock
Oxygen plasma machineHarrick plasmaPDC-001
ParaformaldehydeSigma-AldrichP6148For fixing cell
PDMSDOW CORNINGSylgard 184Mixture for PDMS chip cast-molding fabrication
Pen-StrepGibco10378-016penicillin/streptomycin
PhotoinitiatorCIBAIrgacure 2959
Propidium iodideSigma-AldrichP4170For labeling dead cells
Sterile Filtration cupMilliporeSCGPT05RE
TMSPMASigma-Aldrich440159For hydrogel immobilization
UltrasonicatorDeltaD150H150W, 43kHz
UV lightDAIHANWUV-L10
Freeze DryerFIRSTEK150311025
NIH3T3(fibroblast)Food Industry Research and Development Institute(FIRDI)08C0011
MOXI Z Mini Automated Cell CounterORFLOMXZ001

Referanslar

  1. Simmons, C. S., Petzold, B. C., Pruitt, B. L. Microsystems for biomimetic stimulation of cardiac cells. Lab Chip. 12 (18), 3235-3248 (2012).
  2. Aubin, H., et al. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials. 31 (27), 6941-6951 (2010).
  3. Guan, J., et al. The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics. Biomaterials. 32 (24), 5568-5580 (2011).
  4. Wan, C. R., Chung, S., Kamm, R. D. Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Ann Biomed Eng. 39 (6), 1840-1847 (2011).
  5. Huh, D., et al. Reconstituting organ-level lung functions on a chip. Science. 328 (5986), 1662-1668 (2010).
  6. Li, X., Chu, J. S., Yang, L., Li, S. Anisotropic effects of mechanical strain on neural crest stem cells. Ann. Biomed. Eng. 40 (3), 598-605 (2012).
  7. Butcher, J. T., Barrett, B. C., Nerem, R. M. Equibiaxial strain stimulates fibroblastic phenotype shift in smooth muscle cells in an engineered tissue model of the aortic wall. Biomaterials. 27 (30), 5252-5258 (2006).
  8. Ramon-Azcon, J., et al. Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells. Lab Chip. 12 (16), 2959-2969 (2012).
  9. Park, S. H., Sim, W. Y., Min, B. H., Yang, S. S., Khademhosseini, A., Kaplan, D. L. Chip-Based Comparison of the Osteogenesis of Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells under Mechanical Stimulation. PLoS One. 7 (9), e46689(2012).
  10. Gould, R. A., et al. Cyclic Strain Anisotropy Regulates Valvular Interstitial Cell Phenotype and Tissue Remodeling in 3D Culture. Acta Biomater. 8 (5), 1710-1719 (2012).
  11. Kurpinski, K., Chu, J., Hashi, C., Li, S. Proc Anisotropic mechanosensing by mesenchymal stemcells. Natl Acad Sci USA. 103 (44), 16095-16100 (2006).
  12. Sim, W. Y., Park, S. W., Park, S. H., Min, B. H., Park, S. R., Yang, S. S. A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Lab Chip. 7 (12), 1775-1782 (2007).
  13. Vader, D., Kabla, A., Weitz, D., Mahadevan, L. Strain-Induced Alignment in Collagen Gels. PLoS One. 4 (6), e5902(2009).
  14. Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J., Heilshorn, S. C. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A. 18 (7-8), 806-815 (2012).
  15. Wan, J. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery. Polymers. 4 (2), 1084-1108 (2012).
  16. Moraes, C., Wang, G., Sun, Y., Simmons, C. A. A microfabricated platform for high-throughput unconfined compression of micropatterned biomaterial arrays. Biomaterials. 31 (3), 577-584 (2010).
  17. Keung, A. J., Kumar, S., Schaffer, D. V. Presentation Counts: Microenvironmental Regulation of Stem Cells by Biophysical and Material. Cues. Annu Rev Cell Dev Biol. 26, 533-556 (2010).
  18. Segers, V. F., Lee, R. T. Stem-cell therapy for cardiac disease. Nature. 451 (7181), 937-942 (2008).
  19. Hsieh, H. Y., et al. Gradient static-strain stimulation in a microfluidic chip for 3D cellular alignment. Lab Chip. 14 (3), 482-493 (2014).

Access restricted. Please log in or start a trial to view this content.

Yeniden Basımlar ve İzinler

Bu JoVE makalesinin metnini veya resimlerini yeniden kullanma izni talebi

Izin talebi

Daha Fazla Makale Keşfet

Biyom hendisliksay 126degrade zorlanmamekanik stim lasyonh cre hizalamaPDMSjelatin metakrilat GelMAhidrojel

This article has been published

Video Coming Soon

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır