Method Article
Herein, we describe the fabrication and operation of a double-layer microfluidic system made of polydimethylsiloxane (PDMS). We demonstrate the potential of this device for trapping, directing the coordination pathway of a crystalline molecular material and controlling chemical reactions onto on-chip trapped structures.
The precise localization and controlled chemical treatment of structures on a surface are significant challenges for common laboratory technologies. Herein, we introduce a microfluidic-based technology, employing a double-layer microfluidic device, which can trap and localize in situ and ex situ synthesized structures on microfluidic channel surfaces. Crucially, we show how such a device can be used to conduct controlled chemical reactions onto on-chip trapped structures and we demonstrate how the synthetic pathway of a crystalline molecular material and its positioning inside a microfluidic channel can be precisely modified with this technology. This approach provides new opportunities for the controlled assembly of structures on surface and for their subsequent treatment.
Materiales moleculares durante mucho tiempo han sido estudiados en la comunidad científica debido a su amplio número de aplicaciones en campos como la electrónica molecular, la óptica y sensores 1-4. Entre estos, los conductores orgánicos son una clase especialmente interesante de materiales moleculares debido a su papel central en las pantallas flexibles y dispositivos funcionales integradas 5,6. Sin embargo, las metodologías que se utilizan para permitir el transporte de carga electrónica en los materiales de base molecular se limitan a la formación de complejos de transporte de carga (CTC) y las sales de transporte de carga (CTSS) 7-10. Con frecuencia, los CTC y las CTSs son generados por métodos electroquímicos o por reacciones químicas redox directos; procesos que obstaculizan una transformación controlada de donantes o aceptores restos de arquitecturas más complejas en las que la multifuncionalidad puede ser concebido. En consecuencia, la elucidación de nuevos métodos sistemáticos para la generación y manipulación de molecular-base controlablemateriales D sigue siendo un reto importante en los campos de la ciencia de los materiales y la ingeniería molecular, y si tiene éxito, sin duda, dará lugar a nuevas funciones y nuevas aplicaciones tecnológicas.
En este contexto, las tecnologías de microfluidos recientemente se han utilizado para sintetizar materiales de base molecular debido a su capacidad de controlar el calor y la transferencia de masa, así como el volumen de reacción de difusión de los reactivos durante un proceso sintético 11,12. En pocas palabras, en flujos continuos y en bajos números de Reynolds de una interfaz estable entre dos o más corrientes de reactivo se puede lograr, lo que permite la formación de una zona de reacción bien controlada dentro de la trayectoria de flujo, donde la mezcla sólo se produce a través de la difusión 13-16. De hecho, hemos empleado previamente flujos laminares para localizar la ruta sintética de los materiales moleculares cristalinos tales como polímeros de coordinación (CPs) dentro de los canales de microfluidos 17. Aunque esta metodología ha demostrado gpromesa randes en la realización de nanoestructuras novela CP, la integración directa de este tipo de estructuras en las superficies, así como el tratamiento químico controlado después de su formación aún tiene que ser realizado in situ 18. Para superar esta limitación, se ha demostrado recientemente que el accionamiento de las jaulas de microfluidos neumáticos (o válvulas) incorporados en dispositivos de microfluidos de dos capas se puede utilizar ventajosamente a este respecto. Desde el trabajo pionero del grupo 19 de Quake, válvulas neumáticas de microfluidos con frecuencia se han utilizado para la captura de una sola célula y el aislamiento 20, las investigaciones de actividad enzimática 21, la captura de pequeños volúmenes de fluido 22, la localización de materiales funcionales en las superficies 23 y cristalización de proteínas 24. Sin embargo, hemos demostrado que los dispositivos de microfluidos de doble capa pueden utilizarse para atrapar, localizar e integrar formada in situ de estructuras para leer los componentes y en las superficies 18. Además, también hemos demostrado que esta tecnología se puede utilizar para llevar a cabo tratamientos químicos controlados en las estructuras atrapados, lo que permite tanto, "microfluidos intercambio de ligandos asistida" 18 y controlado dopaje química de cristales orgánicos 18,25. En ambos casos, las CTC se podrían sintetizar en condiciones controladas de microfluidos, y en el más reciente estudio, la multifuncionalidad podrían describirse en la misma pieza de material. En este documento, se demuestra el funcionamiento de los dispositivos de microfluidos de doble capa que emplean flujos de colorantes cargados, generar y controlar la vía de la coordinación de un CP, así como su localización en la superficie de un canal de microfluidos y, finalmente, evaluamos controlado tratamientos químicos sobre el chip estructuras atrapado.
Nota: Dos capas de un dispositivo de microfluidos de doble capa están diseñados usando un software de dibujo, por ejemplo, AutoCAD y se imprimen para formar máscaras de vídeo de alta resolución, con un límite de precisión característica de 5 micras. moldes maestros son creados por SU-8 litografía en 4 obleas de silicio ", lo que permite la producción de estructuras 50 m de altura.
1. Maestro del molde de fabricación Uso de SU-8 Fotolitografia
2. La fabricación de doble capa dispositivos de microfluidos
Nota: El protocolo es particularmente sensible al tiempo y la temperatura. El incumplimiento de las que el marco de tiempo y temperatura puede conducir a la fabricación de dispositivos no-consolidado, y por lo tanto, no funcionales.
3. Ensamblaje del sistema de microfluidos
4. La manipulación del régimen de flujo laminar por la jaula de actuación neumática
Nota: La capa de fluido consta de dos canales convergentes de entrada, que son 150 micras de ancho, a un canal principal más ancha de 300 micras de ancho. Y la capa de control tiene una serie de válvulas rectangulares idénticos (250 m × 200 m) que se encuentran en la parte superior del canal fluídico principal.
5. La localización de micropartículas
6. Generación y reducción controlada de un polímero de coordinación (CP)
Los dispositivos de microfluidos doble capa consisten en dos chips de microfluidos unidos estructurados de PDMS como se muestra en la Figura 1. La primera capa, que es al mismo tiempo unido a una superficie, se utiliza para fluir fluidos (capa de fluido), mientras que la segunda capa, que está unido directamente a la primera capa de PDMS, se utiliza para flujo de gas (capa de control).
Figura 1.-capa Doble dispositivo de microfluidos. (A) Representación esquemática y (B) micrografía del dispositivo de microfluidos de doble capa utilizada en nuestras investigaciones. Haga clic aquí para ver una versión más grande de esta figura.
La inyección de gas a través de canales enla capa de control exprime la capa de fluido hacia la superficie (Figura 2A y la Figura 2B), lo que permite la captura y la localización de las estructuras en la superficie del canal microfluídico. PDMS accionamiento de membrana se puede utilizar para generar jaulas neumáticas y / o micro-válvulas que son controlados por un controlador de neumático. Como los modelos ejemplares de accionamiento de la membrana, se muestra cómo la desviación completa de la capa de fluido evita un flujo de colorante cargado a circular por debajo de la válvula después de su accionamiento (Figura 2C) y la captura de micropartículas fluorescentes en la superficie de microcanal (Figura 2D y 2E) .
Figura 2. Membrana de accionamiento y la captura de las estructuras. (A) lateral y (B) vista superior ilustraciones que muestran ser el dispositivo microfluídico de doble capaproa (parte superior) y después (abajo) de accionamiento de la válvula neumática. (C) Las micrografías de un dispositivo para microfluidos de doble capa antes (parte superior) y después de exprimir de la capa de fluido (parte inferior). En el panel inferior, la capa de fluido se llena con una solución acuosa de colorante rodamina para una mejor percepción de la actuación de la membrana. (D) Las micrografías de campo brillante de un dispositivo para microfluidos de doble capa antes (parte superior) y después (parte inferior) de accionamiento de la válvula con un partículas fluorescentes que fluyen solución acuosa que contiene de poliestireno (10 wt.%). Imágenes (E) fluorescentes de las imágenes de microscopio óptico mostrado en la D. Por favor, haga clic aquí para ver una versión más grande de esta figura.
La figura 3A ilustra la captura de CPs generado in situ dentro de un dispositivo de microfluidos de doble capa a través de actuation de una jaula de neumático. Observe que se genera una nueva vía de coordinación después de la actuación de la primera válvula. El accionamiento de la válvula asegura la captura de la Ag (I) Cys CP generada en la interfaz de las dos corrientes de reactivo y facilita la formación de una nueva vía de coordinación (Figura 3A). Una caracterización química detallada de la Ag (I) Cys CP generada en la interfaz de las dos corrientes de reactivo se puede encontrar en estudios previos 17,18. Además, y después de la eliminación del excedente Reactivos de soluciones con un flujo de agua pura (Figura 3B), una solución de ácido ascórbico saturado en etanol se puede añadir al canal de microfluidos para la reducción química controlada de on-chip estructuras atrapados (Figura 3C). La reducción de la presión de la válvula de 3 bares a 1 bar está a favor de un tratamiento químico controlado de los atrapados CP Ag (I) Cys debajo de la zona de apriete 18. El cambio de color de las PC Ag (I) Cys atrapados a marrón oscuro es unattributed a la reducción de la plata monovalente al metal, de acuerdo con observaciones anteriores 18,29.
Figura 3. El reventado de Ag (I) Cys CPs y reducción química controlada. (A) imagen de microscopio óptico que muestra la captura de un in situ sintetizado Ag (I) Cys CP y la generación de una nueva vía de coordinación. (B) Micrografía de CPs atrapado debajo de la zona de apriete después de la eliminación de las soluciones de reactivos excedentes con un flujo de agua, y en (C), micrografía de la misma micro-válvula después de que el proceso de reacción de reducción. Haga clic aquí para ver una versión más grande de esta figura.
The reported approach can be easily modified to fabricate different valve shapes to afford other applications such as fluid confinement. Indeed, the flexibility of this protocol also allows for modification of the thickness of the bottom layer, and thereby of the PDMS membrane, from a couple of tens to a few hundreds of microns to fulfill any application of interest. Moreover, dimensions of structures in each layer of the device can be optimized for the desired application and various heights of structures on the master molds can be simply achieved by spinning the photoresist at different velocities. Spinning the photoresist at a higher speed results in thinner structures.
To better implement the protocol, a clean room environment for the fabrication of the master molds is substantially essential; otherwise, the fabrication procedure will lead to defective master molds and thereby to unusable microfluidic devices. Two critical aspects should be emphasized in this protocol: i) the constant temperature of the oven that needs to be adjusted to 80 °C and ii) the programmed time period between processes that has to be complied accurately. Any modification of temperature and time frame in the protocol might lead to non-bonded chips, and thus, to non-functional devices.
The "turbulent free" conditions typically encountered in microfluidic systems have recently been employed for the generation of microstructures or molecular materials inside30 and outside single layer microfluidic chips31. In double-layer microfluidic chips, the laminar flow regime, and hence, the interface generated between continuous co-flows can be manipulated using pneumatic cages18,28. These devices also provide for effective control over the synthetic pathway, which in turn leads to precise localization and trapping on surfaces18.
As mentioned earlier, pneumatic actuation in double-layer microfluidic chips has been previously employed for various applications such as cell trapping20, enzymatic activity studies21 and protein crystallization24. However, the main objective of the reported approach is to propose a platform to be used for trapping and directing the coordination pathway of a crystalline molecular material and controlling chemical reactions onto on-chip trapped structures18,25.
The described method does not only allow trapping of anisotropic structures but can be used to localize particles onto surfaces. Future studies can be effectively directed towards the design of new valve shapes for additional application in biology, materials science and sensor technologies. The combination of different valve shapes as well as altered channel heights and membrane thicknesses can be employed to fulfill specific applications, such as chemical studies based on diffusional mixing and the localization of material growth.
A further application of the described microfluidic platforms is in the controlled chemical doping of crystals, which can lead to a rationalized formation of interfaces in crystalline structures19. This approach also provides for a wide range of post-treatments of on-chip trapped structures; a methodology that will undoubtedly open new horizons in materials engineering.
It is important to underline that the number of technologies enabling controlled chemical reactions under dynamic conditions and onto crystalline matter are very limited at present, hence making this approach very attractive in materials-related fields. However, a major limitation of this technology is the use of PDMS. PDMS elastomer is incompatible with many organic solvents, which limits the number of reactions that can be conducted inside these microfluidic chips. In future, the development of other elastomers that can tolerate and be stable against a broader number of organic solvents will be highly required in order to expand this field of research to other materials and chemistries.
The authors have nothing to disclose.
Authors would like to thank the financial support from Swiss National Science Foundation (SNF) through the project no. 200021_160174.
Name | Company | Catalog Number | Comments |
High resolution film masks | Microlitho, UK | - | Features down to 5um |
SU8 photoresist | MicroChem Corp., USA | SU8-3050 | - |
Silicon wafers | Silicon Materials Inc., Germany | 4" Silicon Wafers | Front surface: polished, Back surface: etched |
Silicone Elastomer KIT (PDMS) | Dow Corning, USA | Sylgard® 184 | - |
Spinner | Suiss MicroTech, Germany | Delta 80 spinner | - |
UV-Optometer | Gigahertz-Optik Inc., USA | X1-1 | - |
Mask Aligner | Suiss MicroTech, Germany | Karl Suss MA/BA6 | - |
SU8 developer | Micro resist technology GmbH, Germany | mr-Dev 600 | - |
Trimethylsilyl chloride | Sigma-Aldrich, Switzerland | 386529 | ≥97%, CAUTION: Handle it only under fume hood. |
Biopsy puncher | Miltex GmBH, Germany | 33-31AA-P/25 | 1 mm |
Biopsy puncher | Miltex GmBH, Germany | 33-31A-P/25 | 1.5 mm |
Glass coverslip | Menzel-Glaser, Germany | BB024040SC | 24 mm × 60 mm, #5 |
Laboratory Corona Treater | Electro-Technic Products, USA | BD-20ACV | - |
PTFE tubing | PKM SA, Switzerland | AWG-TFS-XXX | AWG 20TFS, roll of 100 m |
Silicone rubber tubing | Hi-Tek Products, UK | - | 1 mm I.D. |
neMESYS Syringe Pumps | Cetoni GmbH, Germany | Low Pressure (290N) | - |
High resolution camera | Zeiss, Germany | Axiocam MRc 5 | - |
Fluorescent inverted microscope | Zeiss, Germany | Axio Observer A1 | Operable at two wavelengths i.e. 350 nm and 488 nm |
Green polystyrene fluorescent particles | Fisher Scientific, Switzerland | 11523363 | Size: 5.0 um, solid content: 1% |
Silver nitrate (AgNO3) | Sigma-Aldrich, Switzerland | 209139 | ≥99.0%, |
L-Cysteine (Cys) | Sigma-Aldrich, Switzerland | W326305 | ≥97.0%, |
Disposable weighing dish | Sigma-Aldrich, Switzerland | Z154881 | L × W × H : 86 mm × 86 mm × 25 mm |
Disposable weighing dish | Sigma-Aldrich, Switzerland | Z708593 | Hexagonal, Size XL |
Plastic spatula | Semadeni, Switzerland | 3340 | L × W : 135 mm x 14 mm |
Dye, Bemacron ROT E-G | Bezema, Switzerland | BZ 911.231 | Red |
Stereomicroscope | Wild Heerbrugg, Switzerland | Wild M8 | 500x magnification |
Disposable scalpels | B. Braun, Switzerland | 233-5320 | Nr. 20 |
L-Ascorbic acid | Sigma-Aldrich, Switzerland | A4403 | - |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados