S'identifier

Fujita Health University

8 ARTICLES PUBLISHED IN JoVE

image

Biology

Light/dark Transition Test for Mice
Keizo Takao 1, Tsuyoshi Miyakawa 1
1Genetic Engineering and Functional Genomics Unit, Horizontal Medical Research Organization, Graduate School of Medicine, Kyoto University

The light/dark transition test is one of the most widely used tests to measure anxiety-like behavior in mice. Here, we present a movie that shows detailed procedures on how we conduct the test.

image

Biology

Elevated Plus Maze for Mice
Munekazu Komada 1, Keizo Takao 1,2, Tsuyoshi Miyakawa 2
1Genetic Engineering and Functional Genomics Unit, Frontier Technology Center, Graduate School of Medicine, Kyoto University, 2Institute for Comprehensive Medical Science Division of Systems Medicine, Fujita Health University

The elevated plus maze test is one of the most widely used tests for measuring anxiety-like behavior in mice. Here, we present a movie showing the detailed procedures for conducting the test.

image

Biology

Dissection of Hippocampal Dentate Gyrus from Adult Mouse
Hideo Hagihara 1,2, Keiko Toyama 1,2, Nobuyuki Yamasaki 1,3, Tsuyoshi Miyakawa 1,2,4,5
1Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology (CREST), 2Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 3Department of Psychiatry, Graduate School of Medicine, Kyoto University, 4Genetic Engineering and Functional Genomics Group, Horizontal Medical Research Organization, Graduate School of Medicine, Kyoto University, 5Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences

A dissection technique for removal of the dentate gyrus from adult mouse under a stereomicroscope was demonstrated in this video-recorded protocol.

image

Neuroscience

T-maze Forced Alternation and Left-right Discrimination Tasks for Assessing Working and Reference Memory in Mice
Hirotaka Shoji 1,2, Hideo Hagihara 1, Keizo Takao 3, Satoko Hattori 1,2,3, Tsuyoshi Miyakawa 1,2,3
1Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 2Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology (CREST), 3Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences

This article presents the protocol of T-maze tests using a modified automated apparatus for assessing the learning and memory functions in mice.

image

Behavior

Contextual and Cued Fear Conditioning Test Using a Video Analyzing System in Mice
Hirotaka Shoji 1,2, Keizo Takao 2,3, Satoko Hattori 1,2, Tsuyoshi Miyakawa 1,2,3
1Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 2Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology (CREST), 3Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences

This article presents a protocol for a contextual and cued fear conditioning test using a video analyzing system to assess fear learning and memory in mice.

image

Behavior

Clinical-oriented Three-dimensional Gait Analysis Method for Evaluating Gait Disorder
Masahiko Mukaino 1, Kei Ohtsuka 2, Hiroki Tanikawa 2, Fumihiro Matsuda 2, Junya Yamada 3, Norihide Itoh 4, Eiichi Saitoh 1
1Department of Rehabilitation Medicine, School of Medicine, Fujita Health University, 2Faculty of Rehabilitation, School of Health Science, Fujita Health University, 3Department of Rehabilitation, Fujita Health University Hospital, 4Department of Advanced Rehabilitation Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine

In this study, a clinician-friendly three-dimensional gait analysis method, which was designed to be performed in the rehabilitation clinic, is presented. The method consists of a simplified measurement method and intuitive figures to facilitate clinicians' understanding of the results.

image

Biology

Use of Anti-phospho-girdin Antibodies to Visualize Intestinal Tuft Cells in Free-Floating Mouse Jejunum Cryosections
Yuka Mizutani 1, Daisuke Kuga 2, Machiko Iida 1, Kaori Ushida 3, Tsuyoshi Takagi 1, Yoshihito Tokita 1, Masahide Takahashi 3, Masato Asai 1,3
1Division of Perinatology, Institute for Developmental Research, Aichi Human Service Center, 2Surgery Department, Anjo Kosei Hospital, 3Department of Pathology, Nagoya University Graduate School of Medicine

Kuga et al. discovered that phosphorylation-status specific antibodies against the actin binding protein girdin phosphorylated at tyrosine 1798 (pY1798) can be used to label tuft cells (TCs). This protocol allows robust visualization of TCs using immunofluorescent staining of free-floating jejunum cryosections with pY1798 antibodies.

image

Cancer Research

Portal Vein Injection of Colorectal Cancer Organoids to Study the Liver Metastasis Stroma
Hiroki Kobayashi 1,2,3,4, Krystyna A. Gieniec 1,2, Jia Q. Ng 1,2, Jarrad Goyne 1,2, Tamsin R. M. Lannagan 1,2, Elaine M. Thomas 1,2, Georgette Radford 1,2, Tongtong Wang 1,2, Nobumi Suzuki 1,2,5, Mari Ichinose 1,2, Josephine A. Wright 2, Laura Vrbanac 1,2, Alastair D. Burt 6, Masahide Takahashi 3,4,7, Atsushi Enomoto 3, Daniel L. Worthley 2, Susan L. Woods 1,2
1Adelaide Medical School, University of Adelaide, 2South Australian Health and Medical Research Institute (SAHMRI), 3Department of Pathology, Nagoya University Graduate School of Medicine, 4Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, 5Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 6Translational and Clinical Research Institute, Newcastle University, 7International Center for Cell and Gene Therapy, Fujita Health University

Portal vein injection of colorectal cancer (CRC) organoids generates stroma-rich liver metastasis. This mouse model of CRC hepatic metastasis represents a useful tool to study tumor-stroma interactions and develop novel stroma-directed therapeutics such as adeno-associated virus-mediated gene therapies.

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.