Ubiquitination is a key posttranslational modification carried out by a set of three enzymes. Mutations of genes involved in this modification are associated with many different human diseases. Here, we describe protocols to detect protein ubiquitination in cultured cells in vivo and test tubes in vitro.
Here we describe a basic protocol for fluorescent labeling of different elements of heart tubes from larva and adult Drosophila melanogaster. These specimens are well-suited for imaging via fluorescent or confocal microscopy. This technique permits detailed structural analysis of the features of the hearts from a powerful model organism.
Technique required for visualizing the beating heart in larval and adult Drosophila are presented. Each life stage requires a different methodology.
We have developed a Semi-automated Optical Heartbeat Analysis method (SOHA) for analyzing high speed optical recordings from Drosophila, zebrafish and embryonic mouse hearts. We demonstrate the application of our methodology to the analysis of heart function in fruit fly and embryonic mouse hearts.
This is a high fat diet feeding protocol to induce obesity in Drosophila, a model for understanding fundamental molecular mechanisms implicated in lipotoxicity. It also provides a high throughput triacylglyceride assay for measuring fat accumulation in Drosophila and potentially other (insect) models under various dietary, environmental, genetic or physiological conditions.