The zebrafish maxillary barbel is an integumentary sense organ containing ectodermal, mesodermal and neural crest derivatives. Importantly, the adult barbel can regenerate after proximal amputation. This video introduces maxillary barbel development and demonstrates a surgical protocol to induce regeneration, followed by collection, embedding and downstream imaging of barbel specimens.
Thorough preclinical testing of drugs that act in the central nervous system often involves assessing and comparing drug biodistribution in association with specific routes of administration. Here, three commonly used methods of systemic delivery (intravenous, intraperitoneal, and oral) as well as a method for local delivery (convection-enhanced delivery) are demonstrated in mice.
Numerous recent studies have identified mutations in synaptic proteins associated with brain pathologies. Primary cultured cortical neurons offer great flexibility in examining the effects of these disease-associated proteins on dendritic spine morphology and motility.
To assess the function and the regulation of genes during the development of midbrain dopaminergic neurons, we describe a method that involves in ovo electroporation of plasmid DNA constructs into embryonic chick ventral midbrain dopaminergic neuron progenitors. This technique can be used to achieve efficient expression of genes of interest to study different aspects of midbrain development and dopaminergic neuron differentiation.
This new method permits the simultaneous intracellular recording of a single adult mouse motoneuron and the measurement of the force produced by its muscle fibers. The combined investigation of the electrical and mechanical properties of motor units in normal and genetically modified animals is a breakthrough for the study of the neuromuscular system.
In this paper, we describe a useful method to study ligand-gated ion channel function in neurons of acutely isolated brain slices. This method involves the use of a drug-filled micropipette for local application of drugs to neurons recorded using standard patch clamp techniques.
Infection of the prostate may be a contributing factor in mediating pelvic pain in chronic prostatitis. We describe the procedure for preparation of standardized bacterial inoculum, instillation of bacteria into the urethra of male mice and methodology for measuring tactile allodynia in mice over time.
Trypsin digest is one of the most commonly used methods to analyze retinal vasculature. This manuscript describes the method in detail, including key alterations to optimize the technique and remove the non-vascular tissue while preserving the overall architecture of the vessels.
We have developed a novel and reproducible technique to isolate primary cultures of pulmonary artery smooth muscle cells (PASMC) from mice as young as P7, thereby allowing better study of the signaling pathways involved in neonatal smooth muscle cell contraction and relaxation.
Alternative splicing regulation has been shown to contribute to the epithelial-mesenchymal transition (EMT), an essential cellular program in various physiological and pathological processes. Here we describe a method utilizing an inducible EMT model for the detection of alternative splicing during EMT.
This article describes the methodology for administering short periods of intermittent hypoxia to postnatal day 1-8 mouse or rat pups. This approach effectively elicits a robust tissue level “priming effect” on cultured neural progenitor cells that are harvested within 30 min of hypoxia exposure.
This protocol describes decellularization of Sprague Dawley rat kidneys by antegrade perfusion of detergents through the vasculature, producing acellular renal extracellular matrices that serve as templates for repopulation with human renal epithelial cells. Recellularization and use of the resazurin perfusion assay to monitor growth is performed within specially-designed perfusion bioreactors.
GL261 glioma cells provide a useful immunocompetent animal model of glioblastoma. The goals of this protocol are to demonstrate proper techniques for monitoring intracranial tumor growth using in vivo bioluminescence imaging, and to verify the utility of luciferase-modified GL261 cells for studying tumor immunology and immunotherapeutic approaches for treating glioblastoma.
Here, we present the mouse laser-induced choroidal neovascularization (CNV) protocol, an experimental model that re-creates the vascular hallmarks of neovascular age-related macular degeneration (AMD). Once mastered, it can reliably and effectively induce CNV as a model system to test various experimental measures.
This protocol uses multi-view stereo to generate three-dimensional (3D) models out of uncalibrated sequences of photographs, making it affordable and adjustable to a surgical setting. Strain maps between the 3D models are quantified with spline-based isogeometric kinematics, which facilitate representation of smooth surfaces over coarse meshes sharing the same parameterization.
Mismatches in human leukocyte antigen (HLA) sequences between organ donor and recipient pairs are the major cause of antibody-mediated rejection in organ transplantation. Here we present the use of custom antigen arrays that are based on individual donors' HLA sequences to probe anti-donor HLA alloantibodies in organ recipients.
The goal of this protocol is to demonstrate the intra-prostatic injection of prostate cancer cells, with subsequent castration. Orthotopic pre-clinical models of androgen-dependent and castration-resistant prostate cancer are critical to study the disease in the context of a clinically relevant tumor microenvironment and an immunocompetent host.
This article presents a method for studying nicotinic acetylcholine receptors (nAChRs) in mouse brain slices by nicotine uncaging. When coupled with simultaneous patch clamp recording and 2-photon laser scanning microscopy, nicotine uncaging connects nicotinic receptor function with cellular morphology, providing a deeper understanding of cholinergic neurobiology.
Murine bladder tumors are induced with the N-butyl-N-(4-hydroxybutyl) nitrosamine carcinogen (BBN). Bladder tumor generation is heterogeneous; therefore, an accurate assessment of tumor burden is needed before randomization to experimental treatment. Here we present a fast, reliable MRI protocol to assess tumor size and stage.
This protocol describes asynchronous mixing of human embryonic stem cells derived kidney progenitors at the air-liquid interface to efficiently generate kidney organoids.
This study describes how to obtain high quality musculoskeletal images using the extended field-of-view ultrasound (EFOV-US) method for the purpose of making muscle fascicle length measures. We apply this method to muscles with fascicles that extend past the field-of-view of common traditional ultrasound (T-US) probes.
This is a protocol for the surgical implantation and operation of a wirelessly powered interface for peripheral nerves. We demonstrate the utility of this approach with examples from nerve stimulators placed on either the rat sciatic or phrenic nerve.
This biochemical purification method with mass spectrometry-based proteomic analysis facilitates the robust characterization of amyloid fibril cores, which may accelerate the identification of targets for preventing Alzheimer's disease.