Mammalian skin contains a diverse array of structures - such as hair follicles and nerve endings - that exhibit distinctive patterns of spatial organization. Analyzing skin as a flat mount takes advantage of the 2-dimensional geometry of this tissue to produce full-thickness high-resolution images of skin structures.
A low-cost, easy-to-use and powerful system is established to evaluate potential treatments that could ameliorate blood retinal barrier breach induced by histamine. Blood vessel leakage, Müller cell activation and the continuity of neuronal processes are utilized to assess the damage response and its reversal with a potential drug, lipoxin A4.