S'identifier

Chapter 19

z-Transform

Définition de z-Transform
Définition de z-Transform
The z-transform is a fundamental tool used in analyzing discrete-time systems,  serving as the discrete-time counterpart of the Laplace transform. It ...
Région de convergence
Région de convergence
The z-transform converges only for certain values of z. This range of values is known as the Region of Convergence (ROC), which is essential for ...
Propriétés de la transformation z I
Propriétés de la transformation z I
Certain properties provide a solid foundation for analyzing discrete-time systems using the Z-transform. Considering two discrete-time signals, the ...
Propriétés de la z-Transform II
Propriétés de la z-Transform II
The property of Accumulation is derived by expressing the accumulated sum and applying the time-shifting property to solve for the Z-transform. It states ...
Transformée z inverse par expansion de fraction partielle
Transformée z inverse par expansion de fraction partielle
The inverse Z-transform is an essential tool used for converting a function from its frequency domain representation back to the time domain. Consider the ...
Solution d’équation différentielle à l’aide de la transformation z
Solution d’équation différentielle à l’aide de la transformation z
Most practical discrete-time systems can be represented by linear difference equations, making the z-transform a particularly useful tool. Knowing the ...
Relation entre la DFT et la transformation z
Relation entre la DFT et la transformation z
The Discrete Fourier Transform (DFT) analyzes the frequency content of discrete-time signals. It maps the N-sampled discrete time-domain sequence to its ...
JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.