JoVE Logo

Войдите в систему

Chapter 19

z-Transform

Определение Z-преобразования
Определение Z-преобразования
The z-transform is a fundamental tool used in analyzing discrete-time systems,  serving as the discrete-time counterpart of the Laplace transform. It ...
 Область сходимости
 Область сходимости
The z-transform converges only for certain values of z. This range of values is known as the Region of Convergence (ROC), which is essential for ...
 Свойства Z-преобразования
 Свойства Z-преобразования
Certain properties provide a solid foundation for analyzing discrete-time systems using the Z-transform. Considering two discrete-time signals, the ...
Свойства Z-преобразования II
Свойства Z-преобразования II
The property of Accumulation is derived by expressing the accumulated sum and applying the time-shifting property to solve for the Z-transform. It states ...
Обратное Z-преобразование методом разложения на простые дроби
Обратное Z-преобразование методом разложения на простые дроби
The inverse Z-transform is an essential tool used for converting a function from its frequency domain representation back to the time domain. Consider the ...
Решение разностного уравнения с использованием Z-преобразования
Решение разностного уравнения с использованием Z-преобразования
Most practical discrete-time systems can be represented by linear difference equations, making the z-transform a particularly useful tool. Knowing the ...
Связь ДПФ с Z-преобразованием
Связь ДПФ с Z-преобразованием
The Discrete Fourier Transform (DFT) analyzes the frequency content of discrete-time signals. It maps the N-sampled discrete time-domain sequence to its ...
JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены