로그인

Chapter 19

z-Transform

z-Transform의 정의
z-Transform의 정의
The z-transform is a fundamental tool used in analyzing discrete-time systems,  serving as the discrete-time counterpart of the Laplace transform. It ...
수렴 영역(Region of Convergence)
수렴 영역(Region of Convergence)
The z-transform converges only for certain values of z. This range of values is known as the Region of Convergence (ROC), which is essential for ...
z-Transform I의 속성
z-Transform I의 속성
Certain properties provide a solid foundation for analyzing discrete-time systems using the Z-transform. Considering two discrete-time signals, the ...
z-Transform II의 속성
z-Transform II의 속성
The property of Accumulation is derived by expressing the accumulated sum and applying the time-shifting property to solve for the Z-transform. It states ...
부분 분수 확장에 의한 역 z-변환
부분 분수 확장에 의한 역 z-변환
The inverse Z-transform is an essential tool used for converting a function from its frequency domain representation back to the time domain. Consider the ...
z-Transform을 사용한 차분 방정식 해법
z-Transform을 사용한 차분 방정식 해법
Most practical discrete-time systems can be represented by linear difference equations, making the z-transform a particularly useful tool. Knowing the ...
DFT와 z-Transform의 관계
DFT와 z-Transform의 관계
The Discrete Fourier Transform (DFT) analyzes the frequency content of discrete-time signals. It maps the N-sampled discrete time-domain sequence to its ...
JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유