S'identifier

Positioning the cell division plane is a critical step during development and cell differentiation, particularly during mitosis when the plane is essential for determining the size of the two daughter cells. The cell division plane is perpendicular to the plane of chromosome segregation, but different types of organisms have different cell division mechanisms to suit their morphology and function.

Animal cells

In animal cells, the cleavage furrow forms along the plane of cell division starting from the cell cortex, the region below the plasma membrane. The mitotic spindle plays a decisive role in determining the cell division plane; therefore, a change in the axis of the mitotic spindle can alter the division plane. This strategy is used by some eukaryotic organisms, such as Caenorhabditis elegans, to switch from symmetric to asymmetric cell division. Symmetric cell division produces two identical daughter cells and is often used to grow tissues containing many of the same cell type. In contrast, asymmetric division creates cellular diversity as it generates two non-identical daughter cells. For example, neuroepithelial cells initially increase their numbers by undergoing symmetric divisions. After which, they use asymmetric division to produce daughter cells similar to the parent cell as well as differentiating neurons.

Yeast

In budding yeast, such as Saccharomyces cerevisiae, the plane of cell division is decided in the G1 phase by septin proteins. Cytokinesis is achieved by forming a cleavage furrow at the neck region of the budding yeast cells; however, the mitotic apparatus does not play any role in determining the plane of cell division. In contrast, in fission yeast, such as Schizosaccharomyces pombe, the position of the interphase nucleus decides the location of the plane of cell division in the G2 phase. During interphase, the Mid1 protein is mainly localized in the nucleus; however, during mitosis, Mid1 is exported from the nucleus to the cell cortex, where it recruits actomyosin ring components to the medial region of the cell. This eventually results in the mother cell dividing into two similar-sized daughter cells.

Plants

In most plant cells, the plane of cell division is decided before the cell commits to mitosis. A preprophase band is formed along the equator of the parent cell, which marks the plane of cell division. The preprophase band is a ring-like structure composed of microtubules and F-actin. It gives rise to a microtubule bundle called the phragmoplast, which provides a structural scaffold for cell plate expansion and positioning.

Tags

Cell DivisionPlane Of Cell DivisionDetermining PlaneCellular ProcessesCytokinesisMitosisCell BiologyDivision Orientation

Du chapitre 35:

article

Now Playing

35.15 : Determining the Plane of Cell Division

Cell Division

3.1K Vues

article

35.1 : Mitose et cytokinèse

Cell Division

5.3K Vues

article

35.2 : Duplication chromosomique

Cell Division

2.1K Vues

article

35.3 : Cohésines

Cell Division

1.4K Vues

article

35.4 : Condensines

Cell Division

1.4K Vues

article

35.5 : Le fuseau mitotique

Cell Division

2.5K Vues

article

35.6 : Centrosome Duplication

Cell Division

1.5K Vues

article

35.7 : Assemblage de la broche

Cell Division

1.4K Vues

article

35.8 : Fixation des chromatides sœurs

Cell Division

1.1K Vues

article

35.9 : Forces agissant sur les chromosomes

Cell Division

1.2K Vues

article

35.10 : Séparation des chromatides sœurs

Cell Division

1.4K Vues

article

35.11 : Le point de contrôle de l’assemblage de la broche

Cell Division

1.2K Vues

article

35.12 : Anaphases A et B

Cell Division

3.2K Vues

article

35.13 : Complexe favorisant l’anaphase

Cell Division

1.2K Vues

article

35.14 : La bague contractile

Cell Division

1.5K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.