Magnetic flux depends on three factors: the strength of the magnetic field, the area through which the field lines pass, and the field's orientation with respect to the surface area. If any of these quantities vary, a corresponding variation in magnetic flux occurs. If the area through which the magnetic field lines are passing changes, then the magnetic flux also changes. This change in the area can be of two types: the flux through the rectangular loop increases as it moves into the magnetic field, or the magnetic flux through the rotating coil changes.

If a conducting rod moves through a magnetic field perpendicular to the rod's motion, then an emf is induced in the rod. This induced emf produces an induced current when the conducting rod forms a closed conducting loop with a U-shaped conductor. The magnitude and the direction of the induced emf can be determined using Faraday's law and Lenz's law. In such systems, the conservation of energy demands that the power delivered because of the motion of the rod and the power dissipated because of the induced current are equal.

This principle can be seen in the operation of a rail gun. In a rail gun, the conducting rod is replaced with a projectile or weapon to be fired. In this type of gun, the optimal shutting off/ramping down of the magnetic field decreases the flux between the rails, causing a current to flow in the rod that holds the projectile. This current through the armature experiences a magnetic force and is propelled forward. Rail guns, however, are not used widely in the military due to the high cost of production and high currents.

Tags
Motional EMFMagnetic FluxMagnetic Field StrengthAreaOrientationInduced CurrentFaraday s LawLenz s LawConservation Of EnergyRail GunProjectileMagnetic ForceConducting RodClosed Loop

Du chapitre 30:

article

Now Playing

30.4 : Motional Emf

Electromagnetic Induction

2.9K Vues

article

30.1 : Induction

Electromagnetic Induction

3.7K Vues

article

30.2 : Loi de Faraday

Electromagnetic Induction

3.6K Vues

article

30.3 : Loi de Lenz

Electromagnetic Induction

3.2K Vues

article

30.5 : Dynamo de disque Faraday

Electromagnetic Induction

1.9K Vues

article

30.6 : Champs électriques induits

Electromagnetic Induction

3.3K Vues

article

30.7 : Champs électriques induits : applications

Electromagnetic Induction

1.3K Vues

article

30.8 : Courants de Foucault

Electromagnetic Induction

1.4K Vues

article

30.9 : Courant de déplacement

Electromagnetic Induction

2.6K Vues

article

30.10 : Importance du courant de déplacement

Electromagnetic Induction

4.1K Vues

article

30.11 : Champs électromagnétiques

Electromagnetic Induction

2.0K Vues

article

30.12 : Équation de Maxwell de l’électromagnétisme

Electromagnetic Induction

2.8K Vues

article

30.13 : Symétrie dans les équations de Maxwell

Electromagnetic Induction

3.1K Vues

article

30.14 : Loi d’Ampère-Maxwell : résolution de problèmes

Electromagnetic Induction

375 Vues

article

30.15 : Forme différentielle des équations de Maxwell

Electromagnetic Induction

309 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.