Войдите в систему

Magnetic flux depends on three factors: the strength of the magnetic field, the area through which the field lines pass, and the field's orientation with respect to the surface area. If any of these quantities vary, a corresponding variation in magnetic flux occurs. If the area through which the magnetic field lines are passing changes, then the magnetic flux also changes. This change in the area can be of two types: the flux through the rectangular loop increases as it moves into the magnetic field, or the magnetic flux through the rotating coil changes.

If a conducting rod moves through a magnetic field perpendicular to the rod's motion, then an emf is induced in the rod. This induced emf produces an induced current when the conducting rod forms a closed conducting loop with a U-shaped conductor. The magnitude and the direction of the induced emf can be determined using Faraday's law and Lenz's law. In such systems, the conservation of energy demands that the power delivered because of the motion of the rod and the power dissipated because of the induced current are equal.

This principle can be seen in the operation of a rail gun. In a rail gun, the conducting rod is replaced with a projectile or weapon to be fired. In this type of gun, the optimal shutting off/ramping down of the magnetic field decreases the flux between the rails, causing a current to flow in the rod that holds the projectile. This current through the armature experiences a magnetic force and is propelled forward. Rail guns, however, are not used widely in the military due to the high cost of production and high currents.

Теги
Motional EMFMagnetic FluxMagnetic Field StrengthAreaOrientationInduced CurrentFaraday s LawLenz s LawConservation Of EnergyRail GunProjectileMagnetic ForceConducting RodClosed Loop

Из главы 30:

article

Now Playing

30.4 : Motional Emf

Electromagnetic Induction

3.0K Просмотры

article

30.1 : Индукция

Electromagnetic Induction

3.7K Просмотры

article

30.2 : Закон Фарадея

Electromagnetic Induction

3.7K Просмотры

article

30.3 : Закон Ленца

Electromagnetic Induction

3.3K Просмотры

article

30.5 : Динамо-машина с диском Фарадея

Electromagnetic Induction

1.9K Просмотры

article

30.6 : Индуцированные электрические поля

Electromagnetic Induction

3.4K Просмотры

article

30.7 : Индуцированные электрические поля: приложения

Electromagnetic Induction

1.4K Просмотры

article

30.8 : Вихревые токи

Electromagnetic Induction

1.4K Просмотры

article

30.9 : Ток смещения

Electromagnetic Induction

2.7K Просмотры

article

30.10 : Значение тока смещения

Electromagnetic Induction

4.2K Просмотры

article

30.11 : Электромагнитные поля

Electromagnetic Induction

2.0K Просмотры

article

30.12 : Уравнение электромагнетизма Максвелла

Electromagnetic Induction

2.9K Просмотры

article

30.13 : Симметрия в уравнениях Максвелла

Electromagnetic Induction

3.1K Просмотры

article

30.14 : Закон Ампера-Максвелла: решение проблем

Electromagnetic Induction

434 Просмотры

article

30.15 : Дифференциальная форма уравнений Максвелла

Electromagnetic Induction

338 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены